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ABSTRACT

Integrating Non-Semantic Knowledge
into Image Segmentation Processes

September 1983
S

Ralf R. Kohler

B.S. Virginia Polytechnic and State University

MS. Univerity of Massachusetts

PhD., University of Massachusetts

Directed by: Professor Edward Riseman

This dissertation develops several techniques for automatically segmenting .

images into regions. The basic approach involves the integration of different types

of non-semantic knowledge into the segmentation process such that the knowledge

can be used when and where it is useful. These processes are intended to produce

* initial segmentations of complex images which are faithful with respect to fine image

detail, balanced by a computational need to limit the segmentations to a fairly small

number of regions.

Natural scenes often contain intensity gradients, shadows, highlights, texture,

and small objects with fine geometric structure, all of which make the calculation

and evaluation of reasonable segmentations for natural scenes extremely difficult.

The approach taken by this disertation is to integrate specialized knowledge into the

*segmentation p cfor eachkind of image event that can be shown toadversely

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. *°.,
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affect the performance of the proces.

At the center of our segmentation system is an algorithm which labels pixels

in localized subimages with the feature histogram cluster to which they correqpond,

followed by a relaxation labeling proces. However, this algorithm has a tendency 9

to undeuegment by failing to find dusters corresponding to mall objects; it may

also overnegment by splitting intenity gradients into multiple dusters, by finding

clusters for "mixed pixel" regions, and by finding dusters correspondinS to

microtexture elements. In addition, the relaxation process often destroys fine I

structure in the image. Finally, the artificial subimage partitions introduce the

problem of inconsistent duster and the need to recombine the segmentation of

the separate subsimages into a consistent whole. lis dissertation addresses each of

thee problems by adding and deleting dusters based on image space information, by --

mer regions, and by defining different compatibility coefficients in the relaxation

so as to preserve fine structures. The result is a segmentation algorithm which is

more reliable over a broader range of images than the simple clustering algorithm. 0

Solutions to the same segmentation problems were examined via the integration

of different segmentation algorithms (including edge, region, and thresholding

algorithms) to produce a consistent segmentation. Multi-proce. integration techniques

varied from static integration of the final results generated by individual algorithms

through dynamic integration of the processes themselves. Tie resulting unified

segmentations from these approaches were generally better than segmentations

Z-.........
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produced by any of the constituent algorithms.

Finally, the dismertaion also describes the Visions Image Operating System

(10S) which made all of the experiments in this dissertation possible. This software

environment, driven by an interactive user interface in LISP, provides a powerful

experimental tool in which complex image analysis algorithms can be easily

integrated and applied to images of different structure and resolution. The 1OS is

currently being used by many image analysis researchers at the University of

Massachusetts and at several other sites involved in industrial, remote sensing, and

medical applications.
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1.0 INTRODUMTON

1.1 Research Obijctves

The problem of visual perception by computer is often split into two gtages.
The first stage of processing partitions or segments the scene into regions of
differing visual characteristics, while the second gtage attempts to build a three
dimensional model of the scene using this segmentation, the image, and prior world
knowledge. This dissertation focusses solely upon the problem of producing a
reliable segmentation from a visually complex image and proposes a variety of
mechanisms to overcome"u the limitations of existing segmentation algorithms. The
basic methodology involves complementary sources of information and constraints to
improve upon the limited information used by any single segmentation algorithm.

*While the use of semantic information to guide the segmentation process has
potential in specialized applications, it is our position that segmentation algorithms

* should probably not be based on knowledge of the objects to be recognizd. The
view taken here is that higher level processes, which utilize semantic knowledge,
should influence or tune the low level segmentation processes, but semantic
knowledge such as known object identities should not be utilized directly by the
segmentation processes. T7his will, hopefully, result in a domain icdependent
segmentation system which can easily be tuned to take advantage of prior knowledge
for a given domain. .

Natural scenes often contain intensity gradients, shadows, highlighits, texture,
and small objects with fine geometric structur, all of which make the calculation
and evaluation of reasonable segmentations for natural scenes extremely difficult.
Because most segmentation algorithms are based on a small set of heuristics which
reflect both implicit and expilicit assumptions about the image, no segmentation

* algorithm can be expected to produce good segmentations when the assumptions on
which it is based are violated.

The approach taken by this dissertation is to integrate specialized knowledge
into the segmentation process for each kind of image event that can be shown to
adversely affect the performance of the proes This may be done by integratg
the knowledge into a single segmentation algorithm, integrating segmentation
algorithms based on different forms of image information, and integrating
segmentations produced by algorithms based on different knowledge.

This dissertation contains five major components:

,,,- iv- - - - -.- ,." .'. 2" ." " ; " - - - --" "," .' " -. " 0
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0
(I) A software environment, specifi -lly designed for dynamic experimentation in

image analysis, was implemented to facilitate the research presented elsewhere
in the dissertation.

(2) Two extensiops were made to the Nagin cluster based segmentation algorithm
used in chapter 6. The extensions modified the decision boundary for initial
classification of pixels and the compatibility coefficients used in the relaxation
update algorithm.

(3) A paradigm for development of image segmentation algorithms, based on
quantitative evaluation of segmentations, is proposed.

(4) A methodology for the intelligent integration of multiple sources of knowledge
into a single segmentation algorithm is explored. In particular, the selection of
clusters in the Nagin clustering and relaxation algorithm is improved using
spatial expectations about the dusters.

(5) The integration of multiple segmentations and segmentation algorithms based
on different knowledge and different image features is considered.

1.2 Global Context

In our research, segmentations are produced in the context of a complete
image interpretation system, called VISIONS ([HAN75], [HAN78bD, which attempts
to build a three-dimensional description from images of natural outdoor scenes.
Figure 1 shows an overview of this system. In VISIONS, the segmentation executive
builds an initial segmentation of the scene, which is then used by the image
interpretation system to build a set of hierarchically structured hypotheses about the
particular scene based on stored world knowledge. When necessary, these hypotheses
about the semantic content of the scene can be used to produce feedback requests
to the segmentation executive to modify or refine the segmentation. This implies
that the initial segmentation need not be "ideal", but it must be sufficiently detailed
to allow the interpretation system to extract general image properties in order to
begin goal-directed processing. The primary emphasis of this dissertation is on the
the startup problem of producing a "reasonable" initial segmentation without utilizing
general semantic data or specific information about the contents of the image.

In the context of the VISIONS image interpretation system, the segmentation
is an intermediate representation of the scene in which the raw sensory data has
been organized into symbolic structures such as regions, segments, and vertices.
Currently, there is a controversy whether a segmentation is a necessary or desirable _

intermediate structure, and whether there exists a physiological analogue of
segmentation in human visual processing. However, human subjects can perceive
large uniform areas even when presented with images which do not contain
meaningful or familiar objects, or when inadequate context makes recovery of the
semantic content of a scene difficult or impossible. This implies that semantic
labeling of the objects in the scene is not necessary to produce a segmentation and
supports the use of such an intermediate representation in the process of scene
analysis.

* .",.."..-... .
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4 INTRODUCTION

13 Segmentation and Evaluation

A segmentation of an image is a partition of the picture elements (or pixels)
into disjoint sets of spatially contiguous pixels (referred to as regions). The goal of
the image segmentation algorithms is to produce segmentations for which there is a
high correlation between the entities of the real world (objects, surfaces, and parts 0

of objects) and the regions of the segmentation. That is, each region in the image
should ideally correspond to at most one object part.

It is difficult to overstate the complexity of the segmentatiou problem. In
relatively complex, unconstrained scenes, such as full color outdoor scenes, any 4

straight-forward approach is prone to gross errors. Intrinsic characteristics of the
scene such as direct and indirect lighting, varying orientation of surfaces, shadows,
texture, specularity, and noise in the segmentation system (especially due to the
discrete digital representation) make the generation of "good" segmentations very
difficult.

One of the goals of this dissertation is to examine potential improvements in
segmentation processes by integrating multiple sources of image data and
segmentation models into a unified algorithm and to evaluate these algorithms in a
context which utilizes specialized preprocesing and potocesszn to enhance the
performance of the algorithms. In order to evaluate control structures which involve - ,
alternative forms of algorithm interaction and the effect of a particular preproc n -

step, one must be able to evaluate and compare the resulting alternative
segmentations in a quantitative manner.

The problem of segmentation evaluation is an open problem. It is not
generally possible to produce a "correct" segmentation of a complex natural scene,
since a "correct" segmentation implies underlying assumptions about the goals of the
segmentation process ([FMR72], [NAGSOD. In this dissertation we discuss the issues
of segmentation evaluation and propose an appropriate methodology for development
and evaluation of segmentation algorithms based on a set of artificial test images of
varying complexity. 0

IA The VISIONS Image Operting System (10S)

Another difficulty with both segmentation algorithm development and algorithm
evaluation stems from the computational cost of computing even a single 0

• 'segmentation for a high resolution image. A reasonable image might contain 512 by
512 pixels, with three colors and eight bits per color at each pixel, for a total of
approximately six million bits. A particular algorithm might perform dozens of
operations at each pixel, where each operation might consist of hundreds of machine

A "ood" segmentation, typicall), would consist of regions such that each region would be
relatively invariant in some image feature while each boundary between regions would
exhibit a significant, often sharp, gradient in some image feature.

.. _•
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instructions. This compuation cost makes it virtually impossible to perform a
thorough examination of the parameter qae in order to determine the effectiveness
of interactions of multiple algorithm components. In order to facilitate the
development and evaluation of complex segmentation algorithms, a programming
environment for segmentation was developed which supports highly interactive and
dynamic experimentation.

The VISIONS image operating system (10S) was designed to allow interactive
and flexible construction of segmentation algorithms out of efficient primitives
(referred to as image operators). The IOS is based on the hierarchical "processing
cone" model of Hanson and Riseman ([HAN74], [HANSOD. The IOS provides a S
friendly environment via LISP for the dynamic experimentation with, and
development of, image segmentation algorithms. The IOS is described in detail in
chapter 2. The IOS was designed and implemented by the author with considerable
support from many other members of the VISIONS research group. Although the
10S greatly facilitated the experiments presented in this dissertation, it is not
nePr to understand the 106 implementation in order to understand the
remainder of the dissertation; thus chapter 2 may be skipped.

IS Segmseadon Bad umd

Existmg image segmentation algorithms can be divided into two broad dames.
The first class attempts to build regions in the image based on dmflardues of some
characteristics (or features) of the pixels in the image. The second class can be
viewed as implicitly building regions by locating those edgs in the image which
correspond to differences between pixel characteristics. One of the goals of this
dissertation is to integrate these approaches such that both similarity and difference
information is embedded in the segmentation process. Chapter 3 examines several
segmentation algorithms with emphasis on the region and edge segmentation
algorithms utilized in the remainder of the dissertation.

The region algorithm [NAG79] is based on an initial duster analysis of image
features in order to determine the likelihood that each pixel 'belongs" to each
duster. After assigning duster label likelihoods to pixels in image qace, an iterative
probabilistic relaxation is performed. The goal is to use the local context at a pixel
to obtain a consistent labelling for each pxel. The edge algorithm (HAN7a] forms
initial edge probabilities basd on local contrast between adjacent pixels as input to
a probabilistic relaxation algorithm. The updating operator has been developed from
a Bayesian view of the edge patterns which are either consistent or inconsistent with
the formation of continuous boundaries. A third algorithm used in this dissertation
is a segmentation algorithm based on thresholding ([KOH78], [KOH8ID. This
algorithm uses edge contrast to make threshold selection decisions in a partial
integration of the edge and region band approaches. Although these algorithms are
the only major segmentation algorithms employed, the findings and methods of the -
dissertation should be easily extrapolated to other segmentation algorithms. Chapter
3 also compares this dissertation with other systems which have taken a relatively

... ... .. ... ..- :.
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i complete approach to image underanding, as well as to systems which attempt to
. use multiple knowledge sources to attack similarly complex problems.

* IA Seginentaitlee Algorithm Renzsioms

Chapter 4 contains two extensions of the Nagin cluster based segmentation
algorithm described in chapter 3. These extensions, while not integrally related to the
theme of this dissertation, do improve the quality of the segmentations produced and
enhance the robustness of the relaxation component. The first modification selects
decision boundaries between clusters heuristically to minimize the number of errors
remaining after the relaxation. The second modification altered the center pixel' s
contribution to the relaxation update sich that the algorithm could be tuned to
preserve desirable geometries while destroying others.

1.7 Segmentation Evahutlon

Chapter 5 examines the difficult problem of segmentation evaluation. This
chapter proposes a methodology for segmentation algorithm development. The
approach applies algorithms to images of ever increasing complexity, beginning with
very simple artificial images, for which quantitative evaluation is possible, and ending
with complex natural scenes which contain all the image characterics which
complicate the real world, but for which meaningful quantitative segmentation
evaluation is not possible.

12 Integrating Knowledge Into a Segmentation Algorithm

Chapter 6 develops the mechanisms for integrating different knowledge into an ,.
existing segmentation algorithm. This chapter focuses on the selection of clusters in
the Nagin cluster based segmentation algorithm. We investigate the addition of
clusters in a subimage based on consistency between the current cluster set and the
cluster sets in adjacent subimages. This chapter also considers the deletion of
clusters based on expectations about the spatial behavior of image regions formed by
the dusters. In particular, the algorithm attempts to identify clusters which give rise
to micro-texture, gradients, and "mixed pixel" regions. Finally, a region merging
algorithm based on multiple sources of knowledge which could contribute to a
merge decision, is presented. The merge algorithm provides a general framework in
which many very different kinds of knowledge may be uniformly integrated into a
segmentation process. This merging algorithm could be easily extended to utilize
more complex region merge rules, including rules based on feedback from the
semantic interpretation system or segmentation executive. This combined
segmentation algorithm, which utilizes the components described in this chapter, is
shown to provide better and more reliable segmentations.

% . J ' % * ** . *..- *o %%%N , -... . ... % . .. . . .... .. .. •-.-. -o..... ... ,



INTRODUCTION 7

1.9 Itegrafmg Alternative Semtatleum and Seguentallen Alswftlms

Chapter 7 investigates several alternative approaches to the implementation of
Coopertive communication between segmentation promc-. This includes simple static
interaction models where results of several algorithms are combined, as well as more
complex iterative or dynamic interaction models. The goal is to use interproos
consi to enhance the quality of the segmentation produced. In one eaml.e,
the integration of several segmentations using the region merging algorithm of
chapter 6 is shown to produce a segmentation superior to any of the contributing
segmentations.

1.10 Summary

Chapter 8 summarizes the results of this dissertation concluding that various
kinds of non-semantic knowledge can be effectively integrated into the segmentation
process to not only increase the quality of the segentations produced, but more
importantly, to increase the reiiability of the segmentation proces. In chapter 6 we
have successfully integrated knowledge about consistent spatial contexts and
predictions about the expected behavior of feature dusters in the image into a single ""-
segmentation algorithm based on region labeling by histogram dusters. In chapter 7
we integrated several segmentation algorithms which are based on different
assumptions about useful information in the image. We believe, it should now be
potsible to move toward building an effective segmentation executive, utilizing the
the approaches, techniques, and strategies prsented in this dissertation in order to --.
dynamically select algorithms, parameters, merge rules, nd image features, for
particular images or parts of images, to obtain high quality epgme tations.

2.0 THE IMAGE OPERATING SYSTEM

2.1 Overview of the IOS

The Image Operating System Is a complete software environment, built on
LISP, specifically designed for dynamic expermentation wn scene analysis. The 106
was used for all of the experiments presented in the remainder of this thesis.

In order to carry out complex exprments in which various segmentati.onO
algorithms migbt interact, perhaps using different image features, an environment
conducive to such experimentation wea r.,aded. This environment i provided by the
Image Operating System designed and implemented by the author with assistance
from many members of the VISIONS resarch group at the Univesity of
Masachusetts. This image operating system is based on a computational structure
known as a 'procesmn cone" proposed by Hanson and Riseman ([HAN74],
(HAN8)D. This structure is specifically designed for hiearchical parallel operatio-s
on two dimensional arrays and is related to the recognition com of Uhr (UHR72],

S. , - .- ,.::, :: : . , , .. . . . - .. . . . ., . . . . . ,.... ., . . , . , . . , . - . - .. . . . . .
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the hierarchical data structures of Klinger [KLI76], the pyramids of Tanimoto
[TAN75], the quadtrees of Rosenfeld [ROSTI], [HAY74], [ROSO], the planning
algorithms of Kelly [KEL7IJ and Price [PRI7I], and the knowledge-directed analysis -

of Ballard, Brown, and Feldman [BAL78]. A survey of some of the uses of these
types of structures is found in [BURT83], [TAN78], and [TANSO].

The next section describes the proceming cone model and the advantages of
this model for image analysis. The remainder of the chapter presents an overview
of the Image Operating System and considers some of the design decisions used to
arrive at this particular system. For a functional description refer to wThe Image
Operating System Users Manual" [KOH84].

2.2 Th Processing Cone

The processing cone is a model for a hierarchical parallel array pci
architecture proposed by Hanson and Riseman ([Han74] and [HanSOD. Figure 2
depicts the proceusing cone structure. At each level of resolution, n, the cone
contains 2n by 2n pixels, with a vector of values, V, stored at each pixel. The
corresponding vector elements Vi for all pixels at a given level of resolution can be
considered as a single two-dimensional entity; this slice across the cone is referred to
as a plane. A color image, where each pixel contains a three-element vector of the
red, green, and blue components, would be represented as a set of three planes in
the cone. The cone is hierarchical and each pixel at level a has four unique
descendants at level n+1 and exactly one ancestor pixel at each level n-1 (n >= 1).
If the raw data is at level m, m>n, then one can view a pixel at level n as having
a receptive field of 2 m-n by 2m-n pixels at level m.

Image operators are functions which are evaluated on a set of argument
planes and which produce one or more output planes. There are three classes of
operations which may be performed in the cone structure: iteration, reduction, and
projection. For iteration, the level of resolution for both the domain planes and the
range plane is the same. Iteration uses values in the spatial neighborhood of a 1
domain pixel to produce new plane values at the corresponding pixel in the range
planes. For reduction, the level of resolution of the range plane is less than the
level of resolution of the domain planes. Reduction uses values in the neighborhood
of the descendant pixels in the domain plane Oevel n+1) to produce a new plane
value at the ancestor pixel in the range plane (level n). For projection, the level of
resolution of the range plane is larger than the level of resolution of the domain

* plane. Projection uses information from a neighborhood about the unique ancestor
*' pixels in the domain planes (evels m, 0=<m<n) to produce values at each
* descendant range pixel (at level n). These basic operations may of course be

combined in various ways to form more complex algorithms?'

SThe implementation of the IOS actually allows for the definition of image operators which
produce sets of output planes. This is mathematically equivalent but more convenient and
more efficient.

* *. **% .-.. . . . . . .
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The IMFg Operating System

Local image operations are defined by ample prototype functions on the
neighborhood of a pixel to produce values in the output plane(s). Note that tb-
output planes may be distinct from any of the input planes; e.g. an intensity image
might be computed by using the original red, green, and blue input planes to
produce a new intensity output plane. Figure 3 illustrates graphically three simple
examples corresponding to the three different types of image operators:

(1) creating a "median" image by applying a three by three median filter is an
example of iteration, I

(2) creating a lower resolution "maximum" image by finding the maximum of all
descendants of a pixel is an example of reduction,

(3) and finally, creating a locally thresholded output plane where the thresholds
are found in a plane of lower resolution than the data is an example of
projection.'

Since in general it is not known which operators are needed for particular
applications and/or experimental investigations, a mechanism for dynamically
specifying additional prototype functions (referred to as image operators) must be a
part of any implementation of the cone model.

The cone structure has been sbown to be useful for a host of image analysis
problems. The general goals of image analysis include the transformation of a large
spatial array of picture elements (pixels) into a more compact description of the
image in terms of visually distinct syntactic units and their characteristics. The
visual information in the image must be aggregated and labeled with symbolic names
and attributes. The syntactic units most often used are boundary segments
(connected sets of edges) and regions (connected sets of pixels), but other units are
posible. The characteristics of boundaries include but are not limited to location,
length, contrast, and orientation while region characteristics include size, shape,
location, color, and texture. Image operators for computing all of the above have
been implemented with the VISIONS Image Operating System.

The processing cone seems to be an appropriate model or architecture for
rapidly performing the kinds of processing needed to implement generalized image

processing operations for a number of reasons. The first consideration is that the
processing cone is a parallel array architecture that is particularly suited to the
enormous computational demands of image analysis. With images of reasonable
spatial resolution (512 by 512 pixels) and reasonable color resolution (3 colors, 8 bits •
per color) about six million bits of data must be processed for each image. Many
image segmentation algorithms (such as the relaxation algorithms described in chapter
3) require many iterations over this data to produce a final segmentation. The vast
amount of data to be processed and the eventual constraint of real-time processing

3 Actually this is an example of a combination of projection and iteration since one input
plane is of lower resolution than the data while the other input plane is the data to be
thresholded. This operator could have been split into a strict projection of the thresholds
followed by a strict iteration operator to perform the thresholds.

6L.o. . ...
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indicate the necessity of a parallel processing approach.

A second conmideation is that image operators can be simply defined. Image
operations within the cone are defined locally by a prototype function which uses
information at neighboring pixels to produce the remt at the central pixel. The
image operator is defined as the parallel application of the prototype function toal 0
pixels in a plane. The parallel approach is especially viable now that advances in
hardware technology may make such array processors economically feasible [KruSO],
[Dufgl]. The prototypical functions provide a mechanism for developing parallel
algorithms. Combinations of these image operators applied within a suitable control
structure are used to implement complex algorithms needed for segmentation and
feature extraction.

The cone model also supports inherently hierarchical computations. The cone
structure is very appropriate for aggregation of characteristics at coarser (lower)
levels of resolution and for planning, where low resolution results are used to focus
processing at finer (higher) levels. One recent algorithm which uses the hierarchical 0
capabilities of the cone is a hierarchical image registration algorithm due to Glazer,
Reynolds, and Anandan [GLA83].

A Uers View.

One of the goals of the Image Operating System is to provide a flexible
interactive environment in which a user can easily perform experiments involving
many image operators and images at various levels of both spatial and color
resolution. The system is designed as a research tool for algorithm development of
parallel image processing as opposed to a production image processing system. A
production system must heavily emphasize efficiency while a research system may
favor flexibility, extensibility, and functionality over efficiency. This is necessary since
the function to be performed by the research system is generally not as precisely
defined. It should be straightforward to generate an efficient production system
from the research system once the set of image operations to be performed in a
production environment are determined. _

In order to model the processing cone the Image Operating System provides:

(1) the data structures necessary to implement a generalized hierarchical cone
structure,

(2) mechanisms for defining prototypical functions (image operators),

(3) methods for applying image operators,

(4) methods for specifying variable and plane bindings for image operator -.

parameters and logical planes, and

(5) mechanisms for composing sets of image operators into complex algorithms.

- ..o-5 -
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The system should provide a "friendly" environment for both experienced and
naive users. The simplicity with which new image operators can be defined and
added to the lOS is one of the critical strengths of this system. An image operator
may be specified without having to consider the spatial resolution of the images to
which it might eventually be applied for three reasons:

(1) operators are written such that (at least conceptually) the operator is defined
locally for parallel execution at each pixel,

(2) references to image neighbors, ancestors, and desc1dants are all referenced
through a pixel centered coordinate system,

(3) and, references to pixels outside the physical image are handled automatically
based on the users choice of access functions.

Furthermore, images of different data types and ranges can generally be handled
without any extra code in the user function since all access to the image is through
special access functions.!

Image operators are written as FORTRAN subroutines with four sections.
The two most important sections are the procedure section, which defines the
computation to be performed by the image operator, and the environment section,
which provides the logical association (bindings or channels) between the logical
planes utilized in the proces section and the actual image planes resident in the
execution data base (see below). Figure 4 shows a simplified example of a user
function which computes the vertical and horizontal edge strength (i.e. a simple
difference in values of a pair of horizontal and vertical pxels respectively) at each
pixel. The input to the operator is simply an intensity pl*d' and the output consists
of a horizontal edge strength plane and a vertical edge strength plane. S

A pixel-centered coordinate system and correct system handling of boundary
conditions greatly simplify the specification of the prototype image operator since the
image operator generally does not need to compute subscripts for neighboring pixels
or consider special cases for neighboring pixels which fall outside of the image. The
elements in the neighborhood are referenced via a pixel-centered coordinate system;
the center pixel is at row 0 and column 0, the right neighbor is at row 0 and
column 1, while the neighbor below is at row +1 and column 0. Note that the
image operator specification is independent of the level of resolution of the data to
which it will be applied and the data type of the input plane does not need to be
specified. Such image operators can be easily added to the system for any function S
desired by the user.

'Real and Integer type operations are often distinguished both for reasons of efficiency and
because FORTRAN distinguishes these types. Image operators would not distinguish
between image planes whose type as logical, sned byte, unsigned byte, 16 bit integer, or
32 bit integer.

S
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14 The ma Operating System

Subroutine EDGELI

Parameter lntensity- i nten$ity lnpvt plane

Parameter Horintaledg-2 hor iontal edge oUtput plane

Parameter Vertical edg-
3  

vertical edge output plane

Parameter Resolution-level-O the relative level of resolution

c

c Compute a one by two edge operator over the

c intensity input plane

c The output consists of two planet

The horitontal and vertical edge strengths

entry EDCESenv&ronment define the environment in which S
c................ the operator edges works

C

call declareinputplane( intensity, resolution-level)

c the input plan. determine% the

c absolute lesel of resolution

call declareoutputplane( horizontaledges. resolutionjlevel)

call declareoutput_,Plane( vertical.edges. resolutLonlevel)

C the output planes will be defined

c at the same level of resolution

return

c

Entry EO ESJprocess This is the actual computation
C ............. of the operator at each pixel

c
c

c :r -I: Definition of neighborhood addressing

c :c 0: r -- relative ros, - relative column

c .r 0 :r O:r 0:
c :c -1 !€ O:€ 1:

c :r I:

C :c 0: The arguments to get windowvailue are

c ------- (1) The plane from which to get a value

c (2) The relative ro.

(3) The relative column

c

center- get-windowyvalue( intensity 0. 0) intensity at p1il

righta get-windowvalue( intensity 0. 1) intensity to right

below- get-window-value( intensity I. 0) Intensity below

horg_edge- center - below

sert_edge- center - right

call set window value( Hor iontaledg. 0. 0. hon ! edge)

call set _window salue! Vertical edg, 0. 0. set _edge)

c
c the argv -,t, to set_.indow._value

c 1ac 4e, t I aI t get _.ndow value
Cvtth 'e a Ilt On of the value

tc the plane

Figure 4: Example Prototype Image Operator.
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Embedded within the operating system are mechanisms by which the user can

write simple control functions to compose operators or to control the actual
application of the operators to specified levels in the cone. The control functions '"
are written in LISP. The programming language LISP is particularly well suited for -
an experimental environment, since it is an interpreted language and can therefore "
be modified interactively? Figure 5 shows a simple example of control functions for
an experiment using an edge relaxation system (see Chapter 3). The function
EDGE-RELAX-5 computes the initial probabilities of edges from the intensity plane
(which was provided in the call) and performs five iterations of edge relaxation. This
function can then be used in an experiment (TEST-EDG-RELAX) which tries to
evaluate the impact of the parameter MAXEDO (used in the computation of the 0
initial edge probability) on the overall performance of the algorithm.

The user can look at the result of experiments in various ways: by printing
the actual values found in the result planes, by printing a symbolic edge
representation, by displaying direction encoded edge intensities on the graphic
display device, or by displaying the original data as a surface whose height is
proportional to the intensity (Figure 6). The ability to interact with the
experimental algorithms and the ability to view the data in many different modes is
extremely important in an interactive experimental environment.

An Implementors View.

The massive amount of data to be processed in image analysis was the
overriding consideration in the design and implementation of the Image Operating
System. The system must apply operators to images whose size might be as large as
224 pixels (more than 16 million pixels). This requirement implies that efficiency is
an important goal in the design of the system. However, as we have pointed out,
since the system is to be used in a research environment, flexibility, functionality,
and ease of use are also extremely important design considerations.

The system was designed and implemented to run on a VAX-11fl80 host,
utilizing the virtual memory management provided by the VMS operating system. In 0
order to improve efficiency, some of the routines are coded in VAX assembly
language (MACRO). In order to enhance functionality, VAX FORTRAN
capabilities, which are not part of ANSI Standard FORTRAN, were used in many
routines. In particular, VAX array and string descriptors were dynamically
manipulated so that arrays and character strings could be allocated dynamically by
the image operators at execution time allowing for more generalized image operators.
Thus, transporting this system to a computer without virtual memory would require "..-
considerable recoding and development of software predictive paging mechanisms.

'The choice of LISP as a control language is justified in more detail in the section on the
control language below.

0 ' -
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16 The Image Operadug system

(setil -y-housp (GET-PLANE 'mycone 'house 7))

Cot an &**go with 128 pixels ana side (2047) from

(defun get-initprbs (intensity)
(INITPROUS (EDGES (intensIOty)))

* This code defines a function called get-initprbs
* which computes initial edge probabilities by
* applying the image operator INITPROBS to the result
* of the imago operator EDGES (defined in figure 4)

(dofun Edg*-relax-5 (intensity) - 0
(EOEELAK (EOOERCLAX (EDOERELAK (OERELAX

(EDCERELAX (g. t-ini tprobs intensity)

* Edge-relam-S computes five iterations of edge relaxation
on the result of get-initprobs applied to intensity

* (more powerful control constructs are available for both
iteration and recursion in LISP)

Idefun Test-odg-rolax (intensity maiedgl
(set-parameter 'ini tprobs-maiedf maxedg)
(SHOWEDCES (edge-relax-5 intensity )'((miaxval I Om2

* Tost-edg-relai applies the edge relaxation algorithm
for five iterations The function INITPROBS uses a parameter

* named "initprobs-maiedg' as a threshold Edges produced by
* EDCES are converted to probability 1 0 if they eicede
* initprobs-maiedg" The functic Test-edg-relaz uses its
* second argument as that parameter SHOWEDCES displays the
* result The paramseter "marval" is provided to SHOWEDGES
* such that a probability of 1 0 is scaled to full brightness

a n the display device

(fc-cons 'Test-odg-relai (4 my-house) '( 5 10 20 30 40 )

Now perform the tipertment using five different values of
maxedg The set of all the results is returned by the function

Figure 5: Experiment Using Image Operator Sequences.
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Figure 7 shows the overall structure of the system. Each of the major
components of the VISIONS lOS is discussed separately below. The user
communicates with the system via LISP functions and an auxiliary menu system.
The operator application executive retrieves the user-selected image operators from
the image operator library and applies the operator to the user-selected image in the
execution data base.

In order to have the frequently called image accessing functions be as efficient

as possible, the images to which image operators are applied must reside in the

paging memory of the host in a form allowing for very rapid aess. This data
base of images is called the Execution Data Base (EDB). Images to be stored S
between executions of the IS are saved in the Image Data Base in a form which
minimizes the storage cost rather than the access time. The Image Data Base is
used only for the long term storage of images and images must be moved into the
Execution Data Base before image operators can be applied to them. Similarly,
computed results can be saved by copying them from the Execution Data Base into
the Image Data Base. Note that the system described here is still under
development; features which are incomplete or unimplemented are so noted below.
However, the system that does exist has been effectively used for several years at
the University of Massachusetts and at several other sites to perform a number of
different image processing tasks including industrial applications, medical applications,
and remote sensing applications. S

2.3 User Interface

The user interface is one of the most important components of an interactive
system. The lOS provides a friendly environment for the dynamic definition of
experiments with various images and image operators. The system contains
comprehensive on-line documentation and prompting mechanisms, automatic record
keeping mechanisms, and powerful error trapping and reporting mechanisms.

Control Language.

LISP was adopted as the language for interfacing the Image Operating System
with the user. This was a natural choice for a number of reasons:

(1) LISP has all the powerful control structures that are needed.

(2) LISP is interpretive and therefore permits the dynamic generation of
experiments which would otherwise require a compilation and link step in a
non-interpretive language.

(3) LISP would provide a uniform interface with the semantic interpretation
component of the VISIONS system since the interpretation system is based on
a graph processing language called GRASPER, which is, in turn, built on 0
LISP.
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The use of LISP for the entire implementation has the desirable quality of
unifying the system implementation and making the portability of the system much
more feasible. However; for reasons of efficiency a non-interpretive language was
chosen for implementation of the underlying Image Operating System and the image
operators (FORTRAN and VAX-MACRO). Thus, LISP provides flexible user
control and access to the remainder of the underlying system. The interpretive
overhead of LISP is not a liability in the IOS since the vast majority of the
processing cost occurs in the FORTRAN and VAX-MACRO image operators.

Ducumentat o.

This section outlines the documentation tools provided by the VISIONS OS.
In any system which supports multiple users of varying degrees of sophistication, it is
extremely important to provide on-line documentation and documentation tools.
Since the system is designed to be extended by new image operators, any external
documentation will soon be out of date. Furthermore, the effort required to
manually document the processing applied to an image is considerable if replication
of the results at a later time is necessary- perhaps on another image. In the Image
Operating System these two problems are handled by four documentation subsystems:
the help subsystem, the prompting subsystem, the menu subsystem, and the history
subsystem.

The Help Subsystem.

The help subsystem provides on-line help for any component of the system,
any image operator included in the basic system, any image operator added by the
user, many error conditions with their possible causes, and examples of image ..
operators. The help system is hierarchically structured such that only the desired
information is provided in response to a simple help request. The help files are
structured to match the external VAX system documentation structure so that the
help requests can be processed either within the Image Operating System or
externally by VAX-VMS. There is one copy of the system help files which is 0
shared by all users. Each user has unique help files for the image operators which
are not shared. The help files have a straightforward structure and so can be
easily modified by any user; furthermore, the help file for any new image operator
added to the system by the user is automatically linked into the help tree.

1h Prompting Subsystem. S

The prompting subsystem provides a mechanism by which the necessary
information for invoking a particular image operator can be obtained. This system
permits the explicit specification of the necessary information before invocation of
the operator, the automatic use of defaults for information not specified explicitly,

* and dynamic prompting for information when the default cannot generally be
determined apriori. The use of this scheme permits a novice user to simply invoke

" an operator and be prompted for only the crucial information needed by that image

,'. '- " " :-
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operator. An experienced user can fully control the image operation by specifyin
parameters which would otherwise be assigned default values. Note that all
information which may be specifiled for a given image operator should be
documented in the help system.

7U Menu Subsystem.

The menu subsystem supports the development of com prehensive hierarchical
menus which can be used to either sequence control directly or to build plans which
can be executed at a later time. The menu system allows even naive users (without
detailed knowledge of LISP or FORTRAN) to perform image processing experiments
which fail within the domain of some predefined menu.

The History Subsystm.

The history subsystem automatically maintains a complete history of the
napplied to a given iage. All operations applied to all of the ancestor

images of the current image are maintained in at ordered tree. For each operator,
all parameter values are kept such that the operation might be replicated. le
ordered descendants correspond to the ordering of the input images to the operator.
These histories are compressed and saved with the image. This permits the user to
know exactly how a given result was obtained. It is also possible to trade time .
gain disk space by saving only the history of the image and recomputing the

image when it is needed. It may be desirable to apply a sequence of operations to
a small subimage to verify the correctness of the sequence of oper tion in real time
and then use the generated history as a plan to automatically apply the sequence of
operations to the whole image or a different image. Manually maintaining such
detailed processing records is barely feasible, yet a failure to keep such records
may make replication of the result at a later time virtually impossible

ErMor Handling.

The Image Operating System reports errors and warnings with appropriately
descriptive messages. TIe ongoing operation continues for warnings, but control is
returned to LISP for severe errors. It should be impossible to cause processing
errors in the base system which result in termination of the Image Operating
System. In order to extend this protection to image operators added by the user,
an exception handler as provided by VAX-VMS is included in the function
application executive. This handler allows a graceful recovery back to LISP after
any unexpected errors within the user image operator. Note that expected errors
(i.e. conditions for which the user operator tests) would be signalled directly as a
warning or error.

tie menu system is fairly completely desined, but is, as of yet, unimplemented.

The history system is fairly completely desiped but unimplemented.
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When a user operator does fail, the on-line help system actually permits the
user to examine the source code or the listing file (if one exists) to find the code
which produced the error. Often, the VAX-VMS dynamic debugger can then be
used to temporarily patch the function (for the duration of the run) without ever
exiting from the Image Operating System.

2A Data Bases In the OS

The Image Operating System contains four different data bases. The image
data base (1DB) is used for the long-term storage of images. The execution data
base (EDB) is used for the short-term storage of images necessary for, or images S
produced by, image operators. The symbol data base (SDB) serves to communicate
control information and non-image information between components of the system.
The fourth data base is the library of image operators (IOPDB).

As can be seen in Figure 7 accesses to the data bases are made via
specialized accessing functions. These accessing functions help to make the system
modular. Changes in the implementation of any data base in the system affect only
that data base and the corresponding accessing functions. Redefining the external
structure of any of the accessing functions can, however, have repercussions
throughout the system since all calls to the accessing function would have to be
modified.

The Image Data Base (IDB).

The image data base is a hierarchical data structure for the long term storage
of images at various levels of resolution. The data base is organized to minimize
storage requirement and for convenient indexing for retrieval. The images (often
referred to as "image planes" or just "planes") are indexed by cone name, image

name, and level of resolution. A cone is a set of related images stored together in
the same file. Each cone is organized into multiple levels of images; images within
a level have the same spatial resolution. Finally, the image name specifies a
particular image in the cone at that level of resolution.

The level of resolution is a power of 2 such that images of maximum size 2 n
by 2n pixels can be stored at resolution level n. The actual size of the image is
stored with the image and only that portion of the image is actually maintained
in the cone file. The cone structure also supports several different data types for
the images. These data types include binary-valued images (1 bit per pixel), signed
byte-valued images (8 bits per pixel), unsigned byte-valued images (8 bits per pixel),
half-word-valued images (16 bits per pixel), integer-valued images (32 bits per pixel),
and real-valued images (32 bits per pixel in a floating point format). The use of
appropriate data types and subimage specifications permits the user to control both
the spatial and magnitude resolution of the saved images and hence the disk space
required to store them. On a system where disk space is scarce, images might be
stored with only the number of bits actually required to store the image. However,

- 6
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space conservation requires a conversion whenever data is transferred between the
1DB and the EDB, with the reduction in performance implied by such a coding
scheme. Therefore, only the data types used by the EDB are currently supported in
the IDB.

For each image in the IDB, a description of the image and itsprocesig
history are saved with the image. The histories are variable length structures (LISP
s-expressions) which are not dependent upon the particular implementation of LISP.

The IDB accessing functions (IDB-AF) contain functions which transfer images
between the 1DB and the EDB. The accessing functions also include user interface S
routines for querying the contents of the 1DB cones, creating and deleting cones,
and for deleting images (planes) within cones.

The Exmtlo Data Base (EDB).

The execution data base (EDB) contains images which are input to image
operators and images which are output by the image operators. The data base is
organized to minimize access time for each pixel in an image being referenced.
Images must be moved from the IDB into the EDB before image operators may
access the image. All images in the EDB are exactly 2n pixels by 2n pixels. This
permits pixel address calculations without multiplications. The EDB is allocated in
the virtual memory space of the Image Operating System so that no software paging
is needed. Since most image operators need only a small local context to produce
the output values at each pixel and the lOS traversal of the image matches the
storage of the image, very low page fault rates are generally obtained. Predictive
software paging is appealing in such an image processing environment, but typically S
would result in a low of functionality (via restrictions on the order of image
traversal or on the size of the context), or would result in considerable software
overhead if functionality is not sacrificed. Note that this decision limits the
applicability of the current EDB to virtual memory systems such as the VAX.

Currently, a large EDB is allocated apriori, but dynamic extension of the EDB
is possible. Current space management tools permit dymmic allocation, deletion, and
coalescence of the space within the EDB.

When an image operator is applied, the logical image operator input and
output planes are bound to a physical plane in the EDB such that the IDB-AF S
called by the image operator can access the image with minimum overhead.

Te Symbol Data Base (SDB).

The symbol data base is used to pass control parameters and non-image data
between components of the system. The default variable assignments and prompting
for user-supplied variables are implemented within the SDB and its accessing
functions. The symbol data base supports a number of data types (logical, byte,

• S. ".
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0
half-word, integer, real, and character string) as well as multi-dimensional arrays of
these primitive data types. The SDB provides the mechanisms for the dynamic
allocation of these non-scalar parameters (including their descriptors). The SDB use
VAX descriptors for character strings and arrays for compatibility with other
VAX-VMS software.

It would have been possible to implement the symbol data base directly in
LISP. This would have the advantage that the LISP memory management tools
could be utilized, simplifying maintenance of the tables. Also, temporary bindings
for symbols would pose no special problems. That approach woula also minimize
the cost of accessing the symbols in LISP. A number of factors led to the decision
to implement the symbol data base outside of LISP. LISP was not available when
the symbol data base was first needed and modularity favored development of the
SDB as a separate entity. Furthermore, the advantages of LISP memory
management are lost for data types not directly implemented in LISP and the
version of LISP available did not support any of the array data types discussed 0
above. The saving of array contexts would also not be handled correctly for
temporary bindings since LISP normally saves the context by simply allocating a new
cell which points to the structure. This would not be adequate since the arrays ,r.
generally manipulated destructively. The solution of copying the entire structure
would be expensive in both time and space. Saving the parameter context is
possible in the current implementation but must be performed explicitly by the user.

2.5 Application of an Image Operator

The image operators utilize a set of input images and a set of
operator-dependent parameters to produce a set of output images. Most operators "
are defined locally and the image operator application executive applies that local
definition of the operator at each pixel in the image. Although this application is
actually performed sequentially, there are no theoretical reasons why the
computations could not be performed in parallel at all pixels, given the appropriate
hardware implementation of the cone architecture. 0

Image operators are composed of four sections: the environment section
(ES section), the initalization section (IS section), the procedure section (PS section),
and the termlnadon section (T$ section). The environment section is executed once
to define the context within which the operator will run. In this section channels
are opened to access the input and output planes for the image operator. S

Parameters necessary for the computation of the operator are obtained and the
operator declares itself and its purpose to the system. In short, the environment
needed for the application of the operator is generated.

The initialization section is used to initialize any internal variables used by the 0
operator. The process section contains the actual definition of the operator.
Finally, the termination section performs any necessary cleanup (i.e. closing files) and
sets any output parameters.

0

-7 . . . .-.. .
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The process section obtains the values at neighboring pixels via functions which
access the execution data base. In order to keep the definition of the operation as --

simple as possible, these accessing functions do not fail when pixels outside of the
image are referenced. The accessing function instead returns either zero or the
closest actual image value depending on the accessing function used. For instance,
an operator which computes at each pixel the mean of the 3 by 3 neighborhood
centered at the pixel would utilize an accessing function which returns the nearest
image values for pixels outside of the actual image. The process section does not
need to consider pixels at the periphery of the image as special cases and in fact no
conditional instruction is needed in the process section of this simple operator.

S

The image application executive handles the proper invocation of these four
sections for the operator selected by the user. The user can specify the subimage
over which to apply the operator as well as the sampling density across the
subimage (which would be desirable for implementing a non-overlapping window of a
reduction operator).

2.A Summary

The Image Operating System is one of the most advanced systems available
for image processing today and represents a major, continuing, software development
effort in the VISIONS research group. The system has been operational for several .
years at U. Mass. and three other sites. The IOS has been successfully applied to
a number of image domains including natural scenes, biomedical images, Landsat
images, robotics applications, and motion analysis.

The image operating system is a framework within which image processing
algorithms and tools may be developed. During the lOS development the system
evolved and was improved both by extensions to the actual IOS and by development
of a pool of shared image processing functions. The majority of the software
development effort has been expended toward the deve!opment of a shared library
of documented, general-purpose, image operators. The library currently contains
display driven for different display formats on various display devices, image editing 0
operators, statistical and feature extraction operators, generalized convolution
operas, various contrast manipulation operators, noise reduction operators, edge
enhancement operators, clustering operators, and classification operators.

In a recent text entitled "Languages and Architectures for Image Procesing", S
edited by M. Duff. and S. Levialdi (DUF8I] a number of languages and systems for
image processing are presented and compared [MAG81]. The current lOS compares
favorably to all of the languages presented. The VISIONS IOS seems to integrate
many of the strengths of the other image analysis systems. There are two important
characteristics which distinguish the VISIONS 1OS from the other image analysis
systems:

, 0' o ,.,
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(1) The partitioning of the image analysis problem into interpretive control and
non-interpretive image operators allows for good dynamic control for interactive
experimentation without sacrificing image operator efficiency.

(2) The structure imposed on the image operators simplifies the construction of

these operators to minimize image operator development time and cost. S

Future IOS Development.

Further development of the IOS should include the implementation of the
history and menu subsystems. A subsystem to help users interactively program the
prototype image operators is also being developed. Special faster image data base S

accessing functions are being developed to improve the efficiency of many of the
shared image operators. Since the shared operators are used very frequently, these
EDBAFs should enhance the IOS's efficiency considerably.

The major pending modification to the system will distribute the EDB in the
virtual space. Image operators would be subprocesses which would communicate with
the OS through shared memory (the SDB and sections of the EDB actually used by
the image operator would be shared). This would allow for multiple tasks, such as
an image operator task and a display task, to execute concurrently. This means a
user could initiate the display of a particular image and then initiate the
computation of another image operator on a different image without having to wait
for the display operator to complete. The primary advantage of the new system
would not be derived from the multi-processing capability, but from the shortening
of the debug cycle for image operators. In the new system, image operators could
be linked independently without the massive LISP system, allowing the duration of
the debug cycle to be reduced to about five percent of its duration in the current
1OS (i.e. from minutes to seconds). It will be possible to test, edit, compile, link,
and retes a new image operator without ev-- leaving the 10S.

3.0 BACKGROUND, MOTIVATION, AND CONTEXT

This chapter should provide all of the necessary background for the research
contributions presented in Chapters 4, 6, and 7. The chapter is organized into four
separate sections.

The first section provides some general background into the problem of image S

segmentation. Research into picture processing and scene analysis has been
progressing for almost twenty years since Roberts described one of the first scene
analysis systems in 1963 [ROB63]. Now hundreds of papers are published each year
on segmentation and image analysis [ROSS0b]. This section does not attempt to
provide a comprehensive review of the field but instead provides some necessary
pointers into the literature for the papers particularly relevant to this thesis.

-. . .-
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The next section contains a discussion of the approach taken in this
dissertation. This section contains a discussion of another system (Hearsay I) which
also attempted to integrate knowledge from multiple sources to solve a single
problem.

The third section reviews the few other attempts at integrating several S

segmentation algorithms. Chapter 7 addresses this problem in this dissertation.

The fourth and last section describes the particular segmentation algorithms
which were utilized in the thesis. In particular, an iterative clustering algorithm

'a [NAG79], an iterative edge finding algorithm ([HAN78aD, and a thresholding S
segmentation algorithm ([KOH79], [KOH81D are described.

3.1 Characterlstcs of Sepentation Algorithms

Segmentation algorithms can be classified along a number of different
dimensions. One of the most important is a distinction of segmentation algorithms
which are based on edges from those based on regions. The region algorithms form
regions explicitly based on some similarity measure which groups similar adjacent
pixels into regions. Our goal in the VISIONS system is to label regions in the
segmentation with some semantic identity. Given this goal, the edge algorithms may
be viewed as implicitly forming regions by locating the discontinuities or region .

boundaries at which large differences between adjacent pixels occur. This difference
in approach to the segmentation problem can result in dramatically different
partitionings of the image. Many of the edge algorithms are reviewed in [HAN80]
and (DAV75] while many region algorithms are reviewed in [NAG79], [OHL75], and
[PRI77]. An important goal of the current thesis is the integration of these
disparate approaches. Some progress has been made in this area and this work is
discussed in section 3.4 below.

Segmentation algorithms may be based on local or global information for both
edge and region algorithms. Global techniques are used in clustering [OHL75],
[PR177, [PRE66], [TSU73], [NAG79], or in threshold selection (KOH81], [KAT65],
[WAT74] among others. However, global approaches may be based on assumptions
which do not hold locally, while local approaches may jump to local conclusions
which are incorrect in some more global context.

Some of the problems of 81obal approaches based on feature histograms,
including the problems of ovetlapping distributions and hidden clusters, are
addressed in [NAG79]. The two techniques most commonly used to overcome
the problems of the global approach are localization of the global approaches to
arbitrary subimages ([CHCY71], (NAG79D and recursive application of the global
segmentation approaches ([OHL75], (PRI771J. Below we provide two simple examples
to illustrate these approaches.

----
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Let us assume that we are going to segment images using an algorithm which
selects clusters (or peaks) from a histogram of pixel intensities and then labels each
pixel with the cluster label closest to the intensity value of the pixel (i.e. a
minimum distance classifier in feature space). Figure 8 shows how localization in
the image space can lead to more reliable cluster selection. Figure 8a shows an
image with a small square on a background with a small but wide intensity gradient 0

(i.e. slow spatial variation). Figure Sb shows the essentially unimodal histogram of
this image. A segmentation based on this histogram would not be able to
distinguish the square from the background since there is not a separate peak in
the histogram corresponding to the small square. However, if we partition the
image into 16 square subimages of 16 by 16 pixels and segment each subimage 0
independently, then we can find separate clusters for the small square and the
background. Figures 8c and 8d show the subimage containing the small square and
the corresponding histogram. Clearly the cluster corresponding to the small square
could be found in the localized histogram. Localization is especially useful in
images with small objects but it should be noted that the set of local segmentations 0
produced must be reconnected into a single global segmentation (a non-trivial
problem).

Ohlander, Price, and others used recursive histogramming iustead of
localization to capture clusters obscured in the global feature histogram. In this 0
method a cluster is selected and all image pixels are labeled to be in the cluster or
not, thus forming regions in the image. For each large region a histogram is
computed, and if the histogram is not unimodal, a cluster is selected and the
process is recursively applied until all regions are small or unimodal. Figure 9
shows how recursive histogramming can lead to more complete segmentations.
Figure 9a shows an image to be segmented. The figure consists of three rectangles
on a dark background. The two leftmost and adjacent rectangles have quite
different intensities (iL=30 and L=40) while the right rectangle has an intermediate
intensity (0.=35). Figure 9b shows the histogram of the whole image. The first
histogram allows for the separation of the foreground rectangles and the background
Figure 9c shows the segmentation produced by the global histogram alone. This 5
segmentation has not separated the two adjacent rectangles on the left. The
recursive segmentation approach would now take all large regions of this
segmentation and apply the same segmentation algorithm to each region. The
histogram of the regions corresponding to the background and the right rectangle
are essentially unimodal and therefore are not segmented further. However, the 0
region corresponding to the two left rectangles (shown in figure 9d) is bimodal as
seen in figure 9e. Figure 9f shows the final segmentation produced by the
intersection of the segmentation of the global segmentation and the partition of the
left region based on the histogram of figure 9d.

Region algorithms based on global clustering are often subject to gross errors 0
when clusters are hidden or when distributions overlap in the feature space
(histogram) The use of recursive clustering is often effective, but is particularly

6L
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(a) (b)

Figure 8: Using Localization In Cluster Based Segmentation.
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Figure 9: Usung Recuruion in aw er Baud Segmentaton.
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sensitive to the size of the objects to be detected. In figure 8a the small square
could not have been separated using recursive clustering since the global histogram is
effectively unimodal. Localization is less sensitive to the size of the object and can
successfully segment the square in figure 8a. Localization is the method used to
overcome the problems of global clustering in the remainder of the thesis.

Edge algorithms are generally considered to be local when the data upon
which they operate is derived from some local differencing operator; however, the
algorithms for producing a segmentation based on edges may have both local and
global components. For instance, the threshold for edge presence in particular edge
algorithms may be defined either locally or globally [HAN78a]. There are global S
histogram algorithms which detect lines using Hough transforms of edges [HOU62].
These algorithms perform global clustering of edge location and orientation to locate
colinear segments. The edge algorithm used in the remainder of this dissertation
computes edges using local contrast measures.

Another characteristic of segmentation algorithms is the generality of the
algorithm or the range of image classes to which the algorithms may be effectively
applied. Many algorithms are designed to operate in restricted domains, such as
particular types of biomedical images ([PRE66J, [WES75D, or polyhedral blocks in an
environment with controlled lighting ([ROB63], [GUZ68], [WAL75]). Segmentation
algorithms can be quite effective in these constrained domains since the algorithms
may be selected and carefully tuned by taking advantage of the known
characteristics of the images. Some investigators have used top-down prediction
based on semantic models of the scenes to facilitate the segmentation process
([YAK73], [BAL77], REN76D. Semantic information has been used directly for
image segmentation where areas of the image are labeled with potential object labels •
and corresponding probabilities [YAK73]. It is doubtful that such schemes for
integrating semantic knowledge directly into the segmentation phase will succeed with
such simple single level approaches when the number of objects in the image domain
becomes very large.

While the use of semantic information to guide the segmentation process has 0
potential in specialized applications, it is our position that segmentation algorithms
should probably not be based on knowledge of the objects to be recognized. The
view taken here is that higher level processes, which utilize semantic knowledge,
should influence or tune the low level segmentation processes, but semantic
knowledge such as known objectidentities should not be utilized directly by the
segmentation processes. This will, hopefully, result in a domain independent
segmentation system which can easily be tuned to tp" dvantage of prior knowledge
for a given domain.

3.2 Segmentation Executive Components

. . . . . . . . . ...... ,.. .. ......... _., . .. ,., . ... .. , .,..: ,_,. . , ... . .. .-. . .
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In Chapter 2 it was shown that simple image operators could be easily
implemented in the Image Operating System. These operators can perform simple
calculations in parallel for each pixel, producing result planes at the same level of
resolution (iteration), at higher levels of resolution (projection), or at lower levels of
resolution (reduction). These operators alone do not constitute a segmentation
algorithm. Rather, we define a segmentation algorithm as a sequence of such
operators which can accept an image and a set of parameters as input and produce
a segmentation as output.

Segmentation processes are defined as instantiated segmentation algorithms. Asegmentation process can be executed only after the selection, via some strategy, of S
a segmentation algorithm, appropriate image features which determine the input data
(e.g. raw red, saturation, intensity, etc.) and appropriate algorithm-specific parameters.

A complete segmentation computation could consist of a composition of several
segmentation processes, with pro-processing and/or post-processing algorithms. One
preprocessing algorithm used in our research attempts to correct for noise due to
digitization [OVE79], while another uses color information to correct boundary
blurring (PRA80]. One post-processing algorithm suppresses very small regions, while
another (an iterative expand and contract algorithm) closes small gaps in an edge
segmentation in order to form closed boundaries [PERSO].

In our effort to develop intelligent and effective segmentation strategies, it will
prove helpful to characterize the constituent image operators according to their
function. Some of the image operators introduce new hypotheses into the
representation based on the image data; these include operators which generate
hypotheses about cluster membership, or the probability of the existence of an edge
between each pair of pixels. There are other image operators which update
segmentation hypotheses based on local constraints, e.g. the relaxation operator for
edges attempts to organize local edges into continuous global boundaries.

There are also image operators which abstract several hypotheses at some level
of resolution into a single more global hypothesis at a coarser level of resolution. 0
Other image operators project abstracted hypotheses to hypotheses at higher (finer)
levels of resolution. For instance, an operation might aggregate high resolution
edges into a straight boundary hypothesis at low resolution. The low resolution
boundary hypothesis could then generate edge hypotheses or increase the confidence
of existing edge hypotheses for the implied constituent edges at the higher level of
resolution in the cone. It is the above characterization of image operators that
leads us to view our segmentation system in terms of other systems which solve
complex problems by a hypothesis and test paradigm involving multiple knowledge
sources such as Hearsay-U.

,.. • .:,. _:.:., .',,:.. ~....../ ....- ,........ :-.'-..,........ ,.,..........-.........-..
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3.3 The Hearsay-U Analogy

The task we have defined for a segmentation executive includes the
construction and control of the hierarchy of processing structures described above.
A certain similarity exists between the task of the segmentation executive and other
systems designed to coordinate multiple, independent, cooperating knowledge sources
such as Hearsay-fl [ERMSO] in speech understanding, or the VISIONS scene
interpretation systems in image underanding ([HAN74], [HAN78D.

The Hearsay model had a large number of independent knowledge source
which communicated through a global common data structure called a blackboard. S
Each knowledge source had a limited view of the world state represented in the
blackboard and each knowledge source was considered to be both "incomplete" and
"errorful". No single knowledge source could solve the entire problem alone, and
even the partial results produced by a knowledge source might have been incorrect.
It was assumed that other knowledge sources would supply the missing information,
while the incorrect hypotheses would be corrected or ignored during the
interpretation as evidence accumulated.

The knowledge sources were data invoked and were scheduled when a
particular data event in the blackboard occurred. The scheduler focussed the
attention of the system by ordering operations on the scheduling queue according to
an evaluation based on the expected effect of performing the operation. The
scheduler would ignore operations in portions of the utterance which wer.
well-understood since little new information could be gained by the application of
these operations. The scheduler would normally choose to concentrate on areas
adjacent to unambiguous portions of the utterance since these well-understood
sections formed "islands of reliability" which could greatly constrain the search. In
Hearsay-H it was found that when hypotheses at the lower levels of understanding
(ie. phonemes) improved even slightly, the overall performance of the system
improved markedly; the search space was considerably reduced and the correct paths
were evaluated earlier in the search.

This last finding implies that it is important to produce the best possible
segmentations to enhance the performance of the semantic interpretation system.
The primary influence of Hearsay-l and other such systems on this thesis does not
arise from their system architecture, but from the overall approach to the problem
of deciding between alternative competing hypotheses produced by incomplete and
error-prone knowledge sources. The parallel nature of the low-level image
processing architecture makes focus of attention in the image space less important,
since the image operators are applied in parallel to the entire image.' In our

'This assuimes that parallel hardware exists to execute the image operators. Spatial focus of S
attention is of considerable concern in a sequential implementation since it has a
tremendous impact on processing time and cost. The cone hierarchy can be used to
implement coarse resolution plans to limit processing to some portion of the image.

. . .
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implementation of the segmentation executive, the focus of attention mechanisms
decide which segmentation processes (or KSs) to apply and when. The high -.--

processing cost of performing the segmentation process justifies considerable cost in
making scheduling or KS selection decisions. --

How do KS's in Hearsay-H relate to our segmentation processes? One major 0
difference is in the size of the KS's. The segmentation processes are tightly coupled
sets of image operators which generate new hypotheses throughout the image while
Hearsay's KS's are small, relatively efficient, and generate a very few hypotheses
which are usually restricted to a small portion of the utterance. As in Hearsay-il,
interactions between algorithms must take place via a common interface. In Hearsay
this interface was a hierarchical structure containing hypotheses known as a
blackboard. For segmentation processes the processing cone serves this function.
Unlike Hearsay, image operators are not data-invoked (invoked automatically by the
generation of new hypotheses or the modification of old hypotheses).

3A Attempts at Reconciling Edges and Regions

One of the expressed goals of this thesis is to integrate the knowledge
encoded in several algorithms or segmentation processes to generate better
segmentations. There are several possible approaches to the integration of the region .
and edge algorithms. This section briefly reviews other work which implicitly or
explicitly attempts to combine both region and edge information.

One interesting approach is to define appropriate models of image formation
based on both region and edge information. The slope facet model proposed by
Haralick models the image as a large number of small parameterized facets (bilinear,
quadric, or higher order surface patches of the intensity or other feature surface).
Edges are found when adjacent facets have significantly different parameters, while
regions are aggregated by grouping facets with similar parameters. Region and edge
detection are based on standard statistical measures (analysis of variance) [HAR?9].

This dissertation attempts to integrate edge and region information by 0
integrating edge information into the region algorithm, by integrating segmentations
produced by the independently computed region and edge based algorithms, and by

* dynamically integrating the region and edge algorithms.

The building of segmentation processes includes the selection of algorithm
specific parameters. Selection of these parameters should consider region information
for edge algorithms and edge information for region algorithms. A number of
region algorithms based on thresholding the image have utilized gradient or edge
information (including [WES78], [KAT65], (WAT74], [ML78], [MIL79], and [KOH81D.
Kohler (KOH81] contains a comparative evaluation of these methods.
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Some very preliminary experiments with dynamic interaction of segmentation
processes have been reported by Webster [WEB79]. This work independently
proposed a model of process interaction which is strikingly similar to the model
proposed in this thesis (in chapter 7 below). Webster closely coupled a region
relaxation algorithm and an edge relaxation algorithm! Inter-pixel edge probabilities
were substituted for compatibility coefficients, thus allowing the edge algorithm to
influence the region hypotheses. Region label hypotheses were designed to influence
the edge algorithm by averaging the probability that adjacent regions are labeled
differently into the edge probability between the pixels.

The results reported by Webster were not encouraging since no significant 0
improvements in the segmentation due to process interaction were found. The
failure to find improvement may have been due to a number of factors. The
algorithm was tested on a single test scene (a small square on a uniform
background) with different levels of additive noise. This kind of image does not
exhibit any of the complex image characteristics (such as intensity gradients,
non-gaussian texture, and fine image structures) which are difficult for region based
algorithms to deal with. This implied that the edge hypotheses could provide little
help to the more reliable region hypotheses and, therefore, the quality of the
resulting segmentation would not be improved. The lack of improvement may also
have been due to a failure to tune the edge algorithm independently and a failure
to consider the relative contribution of the region and edge components during the
interaction process.

3.5 ITe Region Algorithm

The cluster-based region algorithm used in the remainder of this dissertation is - .
a variation of a relaxation algorithm developed by Nagin [NAG79]; extensions to this
algorithm are discussed in chapter 4. This algorithm is based on the assumption
that the regions in an image will form distinct clusters in feature space (a histogram
of the feature values). Regions are formed by identifying clusters in feature space
and ultimately labeling each of the pixels with one of the cluster labels.
Adjacent pixels will be aggregated into the same region if they have identical labels,
i.e. they belong to the same cluster.

The algorithm has two phases. In the first phase cluster centers are located
in th- feature space and for each pixel a probability of cluster membership for each
of the possible clusters is computed. The clusters selected will be referenced by S
the label set L={i I 1<--i<--m) where m is the number of clusters detected. In this
thesis, only one dimensional histograms are used for finding feature clusters,
although it is possible to look for feature clusters in higher-dimensional feature
spaces (in particular [NAG79] uses 2 dimensional histograms and [COL78] uses
unsupervised n-dimensional clustering). The initial label probabilities for cluster

The region relaxation system is very similar to [NAG79] and the edge system is very
similar to f[AN80].
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affiliation at a given pixel were determined in a straightforward manner using the
normalized inverse distance of the pixel feature value to each of the selected duster
centers.

The second phase of the algorithm is a probabilistic relaxation process [ROS76]
which updates the cluster label probabilities at each pixel based on a five-neighbor
context (the four adjacent pixels and the center pixel itself). The neighborhood
will be referred to as the set N. The contribution of each neighbor x E N to each
duster label i at the center pixel is defined to be:

rx(ij) " PxOi 3.1 
jEL

where Px(j) is the current probability that neighbor x is correctly labeled j, and
r,(ij) is the compatibility coefficient which reflects the support for label i at the
center pixel given that neighbor x is correctly labeled j. The compatibility
coefficient is based on the compatibility between label i at the center pixel with
label j at neighbor x in the initial cluster label distribution. The relative support for
each of the labels at the center pixel is obtained by summing over all neighbors.
The support for label i at the center pixel is defined to be:

q(i)= E rX(iJ) Px(J) 32
x an jaL

Normalization of these contributions via the standard relaxation formula from -

Rosenfeld (ROS76] allows the computation of a new probability for label i at the 0
central pixel (Pc(i) ) as follows:

Pc(i) * (1 + q(i))
PCi) =Pco) * (I+ q()) 33

jiL S

The relaxation process is typically run 20 to 50 iterations and then each pixel is
assigned the highest probability cluster label. Note that there have been a variety
of updating formulas proposed and there are a variety of approaches for specifying
the compatibility coefficients. In [NAG79] the compatibilities are estimated from the S
original probability distribution of cluster labels and do not change during the
relaxation phase. It has been shown that in some instances these image-dependent
distributions capture important contextual information that allows fine image
structures to be preserved within the segmentation.

Nagin used localization to avoid missing clusters. The image is divided into
small subimages (typically 16x16 or 32x32 pixel subimages) and the algorithm is
independently applied to all subimages. The histogram for duster selection is

.. . ;*.-".-.
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0
computed over a subimage which extends 25% in each direction beyond the
subimage in which the segmentation is computed. This is done in order to reduce
the risk of missing clusters corresponding to objects which straddle the inter-subimage
boundaries. The result of this processing is a set of segmentations, one for each
subimage, which must be combined into a single segmentation. Nagin integrated 0
these segmentations by merging regions across subimage boundaries. The criterion for
merging was based on a measure of the difference between the populations of pixels
belonging to the candidate regions in a narrow band along the sub-image boundary.
Because the merge decision is local, it is possible to indirectly link two very
different regions into the same region via a chain of regions, each of which is only
slightly different from its neighbors in the chain. This is particularly noticeable when
the two very different regions being merged happen to lie in the same subimage.
These merge errors are often due to missing clusters in some subimage, a problem

addressed in chapter 6.

3.6 The Edge Algorithm

The edge algorithm used in the remainder of this thesis was developed by
Hanson, Riseman, and Glazer (HANgO] (this work evolved from a similar algorithm
by Prager [PRA79]). No modifications have been made to this algorithm and except
as discussed in the section on dynamic segmentation process interaction below, the '..
algorithm utilized was identical to that presented in [HANSO]. .

The edge algorithm is an iterative algorithm which attempts to organize local
edges into continuous line segments which correspond to region boundaries. The
edge algorithm consists of a sequence of image operators which generates a set of
local edge hypotheses, followed by a relaxation sequence which modifies the edge
hypotheses based on constraints in a local context around the edge hypothesis. In
this algorithm edges are considered to exist between pixels as suggested by
[HAN78b] and [PRA79].

To generate the initial edge hypotheses the algorithm first uses two simple
one-by-two edge masks to measure both the horizont?! and vertical local edge 0
contrast at each pixel. These initial edge hypotheses, based solely on absolute local
contrast, are then locally scaled by an image operator which normalizes the edge
contrast based on a function of the highest local contrast in an 11 by 11
neighborhood of the edge. The initial edge hypotheses are also adjusted by an image
operator which collects a set of parallel non-zero gradient edges of the same 0
direction of contrast into a single more global boundary. This "gradient collection"
process overcomes some of the problems of using the very local one-by-two edge
mask. At this point, initial edge hypotheses are represented as a probability that an
edge should be present in the final edge segmentation at that location.

The second phase of the algorithm is an iterative relaxation process across the 0

plane of edge hypotheses. Using assumptions about good line continuation, the
probability of each edge is updated on the basis of possible boundary continuation
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on either side of the edge. Figure 10 shows the ten equivalence classes Vij of edge
contexts considered by the relaxation operator, where i and j represent the number
of edges present to either side of the central edge. In a given edge context we
estimate the probabilities that this edge context is an instantiation of each of these
equivalence classes. In the VO0 case the central edge has no support from any of -*

its neighbors, while in the V02 and V03 cases the central edge is not needed for
good continuation and to the extent that we believe the current edge context to be
an example of one of these cases the probability of the central edge is decreased
toward zero. If we believe an edge context to be an example of class V0 1, then
the edge is one of three possible continuations of the extant neighboring edge, one
of which should exist. In this case the probability of the central edge is increased
slightly. If we believe the edge context to be an example of the classes VII, V12,
or V13, then the central edge is necessary for good continuation and the probability
of the central edge is increased toward one. The remaining cases are ambiguous in
terms of what is required for good continuation and have no effect on the
probability of the central edge. Additional information used in the updating
includes the consistency of the edge's direction (i.e.. the signs of the gradients) and
the alternative parallel locations for placement on either side of the edge.

The edge relaxation is typically terminated after about 20 iterations. Figure 11
shows a typical result of this algorithm on a natural outdoor scene. Figure Ila
shows the original intensity image, Figure 1Ib shows the initial edge probabilities,
and Figure 1lc shows the resulting edges after 2 iterations of relaxation and figure
lid shows the result after 20 iterations. Note that although many of the
discontinuities in the image have been properly located, the segmentation often does
not form closed regions which correspond to real world structures. Some additional
processing is clearly needed before this segmentation can be properly utilized by a
semantic interpretation system which requires closed regions.

3.7 The Thresholding Segmentation Algorithm

Another algorithm used later in this dissertation is a multi-threshold 0
segmentation algorithm [KOH78], [KOH81]. The algorithm selects a threshold for a
given image such that the average intensity gradient across all boundaries detected
by the threshold is maximized. This selection is accomplished without search by
simultaneously computing the expected average contrast (gradient) for each possible
threshold. Additional thresholds can be identically selected after any edges detected
by previously selected thresholds have been eliminated from the computation.

This algorithm, like the region algorithm, is guaranteed to form closed
boundaries and is based on global measurements across the image. It is like the
edge algorithm in that the threshold selection is based on local contrast information
rather than similarity information as the region algorithm is. 0
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(a) (b)

(C) (d)

Figure 11: Edge Relazatlon Algorithm Segmnentation Remilt.
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4.0 MODIFICATIONS TO THE CLUSTERING ALGORITHM

Two modifications have been made to improve the performance of the Nagin
cluster based segmentation algorithm. These are necessary and significant
improvements to the region clustering algorithm which forms the primary
segmentation process around which chapter six of this dissertation is centered. The
first modification altered the computation of the initial cluster affiliation probabilities
to reduce the classification error rate after relaxation. The second modification
altered the definition of the compatibility coefficients such that the cluster label
probabilities do not diverge in a manner dependent on the absolute magnitude of
the compatibility coefficients.

4.1 Modification of Initial Probability Computation

The region algorithm selects feature space clusters and then associates a
probability vector with each pixel. The component elements of the probability
vector, which represent the likelihood that the pixel is a member of the respective
clusters, are inversely proportional to the pixel's normalized distance to each of the
cluster centers in the feature space. Given n cluster centers C1 to Cn and a pixel
with feature value i (e.g. intensity = i) then the probability component for cluster m
would be given by:

I / Dim4..
P(m) = t.

Y, 1 /1 4.1l<a<n

where Dia is the feature space distance (e.g. intensity difference) between cluster
center Ca and the feature value i. The values of the probability vectors are
modified by an iterative updating process and the best label for a pixel is defined
to be the most likely cluster label after relaxation. Note that a maximum likelihood
classificatinn could be carried out on the initial probability vectors, which is
equivalent to a minimum distance classifier, since the maximum component of the
probability vector always corresponds to the closest cluster center.

It is well known in pattern recognition [DUD73I that a minimum distance
classifier is not always optimal. Since we have no knowledge of either the number
of underlying distributions in the histogram or their form, a theoretical analysis
seems intractable. However, another heuristic decision boundary at the valleys 0
between the cluster peaks has been widely used [PREI6],[OHL75]. Figure 12a shows
a simple image composed of two gaussian regions of different sizes and feature
distributions (background p - 30, a = 4.0, and foreground tt = 42, a = .6).
Figure 12b shows the feature histogram with the minimum distance decision
boundary (at a), the valley decision boundaries (at b)"0 while figures 12c and 12d

IC Figure 12b also shows the heuristic decision boundary (at c) presented below.
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show the initial segmentation based on the minimum distance and valley decision
boundaries respectively. Use of the valley decision boundary has reduced the
number of misclassified pixels from 221 to 16. This strongly suggests the use of the
valley decision boundary if one assumes all errors have equal cost. However, in the
context of the relaxation algorithm, all errors do not have equal cost since the
probability updating may correct some errors. Figures 12f and 12g show that after
30 iterations of relaxation the minimum Aistance classifier (used by Nagin) resulted
in 9 mis-classified pixels while the valley decision boundary resulted in an almost
entirely correct segmentation. In this example, the valley decision boundary results
in fewer errors both before and after the relaxation process.

There are cases for which the valley classifier is inferior to the minimum
distance classifier after relaxation, as shown in figure 13. Figure 13a shows a
foreground region (p& = 42, a = 3.0) on a darker background (IL = 30, cr = 3.0).
The foreground region has a large perimeter to area ratio. Figure 13b shows the
histogram of figure 13a with the minimum distance and valley decision boundaries
marked at 'a' and Ib respectively (the heuristic decision boundary proposed below is
shown at 'c'). Figures 13c and 13d show the initial labeling of the pixels using the
minimum distance and valley decision boundaries respectively. Figures 13f and 13g
show the corresponding labeling after 30 iterations of relaxation. In these cases the
minimum distance classification led to 12 errors after relaxation, while the valley _.
decision boundary classification led to 41 errors. _

The better performance of the minimum distance decision boundary in this last
example seems to be due to two factors: (a) the significant difference in the sizes of
the regions and (b) the large ratio of perimeter to area for the smaller region.
Spatially adjacent errors in the interior of a region may not be corrected by the
relaxation since they mutually support each other's incorrect label. Likewise, errors
on the boundary of a region may have support for their incorrect label from the
neighboring region. In this example, the selection of the valley decision boundary
shifted the decision boundary toward the smaller cluster with a relatively high
perimeter to area ratio, and therefore increased the number of errors which were
difficult to correct in the small region. The probability of spatially co-occurring
errors clearly increases as the same number of errors are squeezed into a smaller
and smaller region. The probability of errors on the boundary of the region also
increases with the perimeter to area ratio.

In cases such as the one above, the minimum distance decision boundary is
preferable, yet, for many cz-s the valley decision boundary is preferable. A
heuristic was proposed to move the decision boundary away from the smaller of the
two populations to reduce the probability of spatially co-occuring errors in the
smaller region. The heuristic was designed to move the decision boundary from the
valley boundary toward the minimum distance boundary by an amount proportional
to the difference in the sizes of the populations and the degree to which the
populations overlapped. The heuristic decision boundary, simply based on the
histogram, was defined to be:
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D V ,(1  m42.H2) -D = min(HIH2) max(HH2) )  (Pmd Dvd) + Dvd

where Dmd and Dvd are the minimum distance and valley decision boundaries
respectively, V is the feature frequency found at Dvd, while HI and H2 are the S

feature frequencies at the cluster centers. The V term is a crude estimate of the
population overlap, while HI and H2 are crude estimates of the population sizes.
The resulting segmentations before and after relaxation are shown in figures 12e and
12h and 13e and 13h for the two example images.

In the case of figure 12 the heuristic decision bound is very close to the valley
decision boundary (at i=40 rather than i=41) and results in one error after
relaxation. In the case of figure 13 the heuristic decision boundary was placed
halfway between the valley and minimum distance decision boundaries (at i=37
where valley decision boundary selected i=39 and the minimum distance boundary
was i=35). In the second case, the minimum distance boundary resulted in 12 errors S

after relaxation, the valley boundary resulted in 41 errors, and the heuristic
boundary resulted in only 3 errors.

4.2 P.odiflcation of Center Pixel Compatibillles

In the Nagin relaxation algorithm each neighbor of a pixel to be updated has
a distinct set of compatibility coefficients which define how that neighbor influences
the probability update at the central pixel. All of these compatibility coefficients are
determined from the initial probability distribution of the image based on a
correlation measure. However, the choice of compatibility coefficient for self support
of the central pixel in Nagin's algorithm was somewhat ad hoc:

I if i=j i -. .

rc=4
-1 otherwise

This section defines objectives for the relaxation in terms of the algorithm's behavior
in particular image geometries at convergence or partial convergence, and then
determines the appropriate central pixel compatibilities which will attain these
objectives. This methodology provides understanding into the behavior of the
relaxation algorithm in certain partially converged cases and therefore permits
precise control of the relaxation algorithm in these cases. The analysis of the
central pixel compatibility coefficients was suggested by the method of analysis used
by Richards, Landgrebe, Swain [RIC80] in the determination of appropriate neighbor
weights for each pixel in a different relaxation algorithm.

The Nagin center pixel compatibilities lead to considerably different behavior
of the relaxation algorithm when the initial probabilities were very ambiguous or ._.-

* very clear. Empirically, when the initial probabilities were very close to 0 or 1,

* . a.,. ,
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then the magnitudes of the compatibility coefficients were large. In this case, the
four neighbors overpowered the self support of the central pixel and the relaxation
tended to destroy fine structures. If the initial probabilities of the best and second
best labels were roughly the same for most of the pixels, then the magnitudes of

i the compatibility coefficients were quite small and the relaxation update was
dominated by the central pixel. In this case, even isolated mislabeled pixels could
survive the relaxation process.

Thus, one of the reasons Nagin's method did not always perform effectively is
because it did not properly balance the influence of the central pixel with that of
the other neighbors. The analysis below makes the assumption that certain
geometries (such as long thin regions) are to be preserved by the relaxation process.
This assumption gives rise to a set of constraint inequalities which may be solved
for the values of the center pixel compatibility coefficients such that when local
convergence is reached (i.e. probabilities for cluster labels are 0 or I in some image
neighborhood) the desired geometry of labels remains stable.

In this analysis, we define two constraints on the relaxation process:

(1) The stability constraint.
A pixel which has converged to label x will remain converged to label x when
at least one of its neighbors is also converged to label x. A pixel is
converged if the probability of its best label is 1. -

* (2) The effectiveness constraint.
A pixel should not be allowed to remain converged to label x if all of its

* neighbors are converged and none are labeled x.

The stability constraint guarantees that one pixel wide, fine structures will be
preserved and that two pixel regions are possible in the final segmentation. If two
supporting neighbors were required for stability, then it would not be possible for
one pixel wide fine structures to have the probabilities of their labels guaranteed to
be stable since they might then erode from the end of the structure. When there
are different geometries of labels whose stability is desired, a similar derivation is
possible, although there is no guarantee that a solution will exist for other sets of
constraints.

The effectiveness constraint guarantees that no isolated pixels will survive the
relaxation process at convergence." This condition guarantees that every converged
pixel is part of a stable structure. Several alternative, les restrictive, definitions of
the effectiveness constraint are also reasonable. It may not always be possible or
desirable to have such a strong effectiveness constraint. The three other possible
effectiveness constraints would guarantee that an isolated pixel would not remain at
convergence only if at least either 2,3, or all four neighbors have converged to the

."By isolated we mean none of the rxel's neighbors are converged to the same label as the
pixel.
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same label. Note that all of these constraints are identical in the two label case.
The theory does not guarantee that a pixel will converge to the same label as one
of its neighbors, only that the pixel will not converge to a label different from
every neighbor; however in practice, this is almost always the case.

For both the effectiveness and stability constraints, the particular constraint

selected might be a function of the image domain, but the analysis presented below
could be similarly derived for any of the possible constraints.

f the neighborhood is converged and the central pixel is labeled i, then that
label will be maintained if the relaxation update equation (3.3) does not decrease the S
value of Pc(i). From equation 3.3 we can see that this condition holds whenever

I + q(i) >= 4.5
Pc(i) I + qoj)

jeL 

Since the sum all Pc@) for all j in L is 1.0, the denominator of this inequality is a
weighted average of the (1 + q(j)) terms. This means that the label i will be
preserved if and only if q(i) is greater than the weighted average value of all q(j)
for j in L. This is certainly true when q(i) >= qj) for all other labels j (that is
when the current label has more support than any other alternative label). Let us
use P,(y) to denote the probability that pixel x should be labeled y. 2  Figure 14a

shows the neighborhood used in the update equation for the case of two clusters.
The following section shows how the center pixel compatibilities may be found to
satisfy the stability constraint in the case of two labels. Section 4.2 extends the
argument to multiple labels and section 42.3 derives the effectiveness constraint for
these cases. Finally, section 42.4 extends the method to certain partially converged
neighborhoods. Section 42.5 compares the region relaxation algorithm uaing the
new center compatibilities to the Nagin algorithm in a simple experiment.

Stability Constraint - The Two Label Case.

We will initially restrict ourselves to the case of two labels in the neighborhood. If
we assume that the update neighborhood is locally converged (probabilities of all
labels are 0 or I), then q() for each label j can be simplified since Px(y)=l or S

Px(y)=0. For the case shown in figure 14b the relaxation update equation terms for

g(l) and q(2) can be expanded as follows:

U The notation used for the neighbors is as follows:

c - center pixel
r pixel to right
! pixel to left

u pixel above (up)
d pixel below (down)

-. o .4
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q(l) = rd(1,I) + rc(1,1) + rl(l,2) + ru(1,2) + rr(l,2 ) 4.6

q(2) rd(2,l) + rc(2,1) + r1(2,2) + ru(2 ,2 ) + rr(2,2) 4.7

As discussed above, all compatibilities for the neighbors are constants computed from
the current image, thus allowing us to solve for the center compatibilities in the
inequality q(l) >= q(2):

r r( r1(2,2) - r1(1,2) + rr(2 ,2) - rr(1,2)rc(1,1) - rc(2,1) >=) 4.8

+ rd(2,l) - rd(l,1) + ru(2,2) - ru(I,2)

The pixel which supports the central pixel could, of course, appear at any of the
other neighbors and all four possible orientations must be considered. Thus, a
similar derivation using the cases of figures 14c-14e yields three additional
inequalities for rc(1,1) - r,(2 ,1) which must be satisfied if the stability of the label
geometry in any orientation is to be guaranteed. The value for rc(i,i) is arbitrarily
assigned to be zero. We can then solve for rc(2,1) which simultaneously satisfies the
four directional inequalities. By reversing the labels in figure 14b, we can solve for
the rc(l,2) coefficient.

The Stalility Contraint- Te Muld-label Case. S

Extension to multiple labels is fairly straightforward. Note that in inequality
4.8 each neighbor introduced exactly two terms for the q(1) >= q(2) inequality. .-

Figure 14g is an example where a third label is seen in the neighborhood. The same
constraint inequality (q(1)>=q(2)) can be used to derive additional constraints on
rc(l,2):

r1(2,3 ) - rl(1,3) + r,(2,2) -rr(1,2 ) ,.. .
rc(l,l) rc(2 ,l) >= (.1+ "."

+ rd(2,1) - rd(l,l) + ru(2 ,2 ) - ru(I, 2 ) / 0

As can be seen, the only terms which have changed (between inequalities 4.8 and
4.10) correspond to the neighbor with the third label. It is clear that the maximum
of these term pairs would be the more restrictive constraint. Let us define L as
the set of all n labels and LX as the set of all n labels excluding the best label of 0

the central pixel, then the maximum constraint imposed on the ql >= q2 inequality
by neighbor x would be:

... . . . - .. ..

- ..
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MAX (rx(2,z) - rx(lz) ) 4.11
z e LX

Generalizing to other neighbors with different labels produces the following
constraint:

MAX ( rl(2,z) - r1(1z) )
z eLX

+ MAX (r(2,z) - rr(1z)

rc(1,I) - rc(2 ,1) >+r 4.12
+ rd(2,1)  rd(1,1)

+ MAX ( ru(2 ,z) - ru(1,z) )
z wLX 0

As above, there are still a total of four constraints for each label pair (one for each
possible direction of support, corresponding to figures 14b - 14e).

Given our approach to the specification of compatibility coefficients, all the
coefficients on the right hand side of equation 4.12 are image-dependent and
calculated d'rectly from the joint probabilities of spatially adjacent labels. Then,
combining all image dependent constants in 4.12 into the image dependent constant
C2 and assuming rc(ii) = 0, one can rewrite inequality 4.12 as:

rc(2 ,1) <= C2. 4.13

Effectiveness Constraint.

We must also ensure that the effectiveness constraint, which guarantees that
isolated unsupported labels should not remain at convergence, is satisfied as well. In
this case we want the updated value of Pc to decrease. From equation 3.3 we can

see that this is true whenever

1 + (i) 1 4.14
Pc(i) ( I+ q())

j L 0

Again, the denominator of this form is the weighted average of (I + q(j)) for all j
in L. If we have q(i) < qO) for all j then this form will be less than one and the
central pixel will not remain converged at label i. To satisfy this constraint in the
two label cases such as that shown in figure 14g we must have q(l) < q(2). In S

this case, we have

S _

" * - -.-
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q(1) = rc(1,1) + rd(l, 2) + r1(1,2) + ru(1,2) + r,(1,2 ) 41

q(2) =rc(2,1) + rd(2 ,2) + r1(2,2) + ru(2,2) + rr(2 ,2) 4.16

Again, solving for the center compatibilities we obtain:

r2,)- r(, 2 ) + r( 2,2) - r(,2)

-~ rc(Il) - ~~2~1) <+ r(2,2) - r(1,2) + r( 2,2 ) - r(, 2 ) )41
This form may also be generalized to the multiple label cae (in the same manner

S as the previous case) yielding the inequality:

MIN (rj( 2 ,z) - rl(1,z))
z a LX

/ + MIN (rr(2,z) - rr(lz))

rc(lIl) - rc(2,I) < +-4.18

+ MIN (rd(2,z) -rudOX))0

z a LX

- Again, under the assumption that the rx(ij) compatibilities are image dependent
constants, the right side of this equation (including the rc(IJl) term) may be

S combined into the image dependent constant C1 and rewritten as:

rc( 2,l) > C1  4.19

- T'his, together with the result of the previous section, yields a bounded interval in

which rc(2 ,I) must lie in order to satisfy both constraints:

C1 < rc(2,I) <= C2. 4.20

0 ~For rc(2 ,1) less than C1, an isoated label could remain converged through the0
relaxation process, while for rc(2,1) greater than C2 one pixel wide structures could
be destroyed. When rc(2 ,I) is close to C1, the relaxation has strong inertia (the
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magnitude of the center pixel's influence is large) and the relaxation will barely
keep isolated pixels from converging. When rc(2,l) is close to C2 the relaxation has

less inertia and the relaxation will barely maintain converged, one pixel wide, fine
structures. At the weak extreme the relaxation may not change the labeling of
some incorrectly labeled pixels while at the strong extreme fine structure might be
obliterated long before local convergence is reached. Since the actual values of CI
and C2 are dependent on the image, the interval may in fact be empty for some
images and cluster set combinations, making it impossible to simultaneously satisfy
both constraints.

Partially Converged Neighborhoods. 0

One can gain further understanding of the behavior of the updating process for
different values of rc(2,1) in the interval (CI , C21 by considering some slightly

more complex cases in which local convergence is not complete. In figure 15a the
three neighbors supporting label 2 are converged, yet the central pixel and the pixel
supporting the current label of of the central pixel have a probability x for label I

and a probability of x =1 - x for label 2:

Pc(1 ) = Pd(1) = x, x > 3

Pc(2) = Pd x

In order to satisfy the stability constraint we again want q(1) >= q(2). Here, q(1)
and q(2) are somewhat more complex:

q(1) x rd(Il) + x rd(2 ,1) + x rc(1,I) + x rc(2 ,1) 4.21
+ rl(1,2) + ru(1,2) + rr(I,2)

q(2) = x rc(2 ,2 ) + x rc(l, 2 ) + x rd(2 ,2 ) + x rc(1,2 ) 4.22

+ rl(2,2) + ru(2,2) + rr(2,2)

Substituting into the inequality q(l) >= q(2) and rearranging terms we can obtain

0 .

0 0
~... ... .... ... .... ... ... ..
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Figure 15: Partal Convergence Case for Center Compalbtltly Coefficients.
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x (rc(ll) - rc(1,2) ) x (rd(2,2) - rd(2,1) )

x rc(2,2) - rc(2,1) )>= + x (rd(1,2) - rd(l,l) ) 4.23
+ rl(2,2)-rl(1,2) •

+ ru(2,2.ru(1,2)
+ rr(2 ,2)-rr(1, 2 )

Again, there are a total of four directional cases to consider and the inequality can
be extended to the multiple label case. Collecting the constant terms of the
resulting form into a single constant C3 , we can write this form as

x rc(2,1) - x rc(1,2) >= C3 . 4.24

Note that now, the computations of the rc(2 ,l) coefficient and the rc(1,2) coefficient 0

are no longer independent. By considering the complementary case, shown in figure
13b (the only other case which also affects this pair of compatibilities), we obtain:

x rc(l, 2 ) - x rc( 2 ,1) >= C4 . 4.25

Solving these two simultaneous inequalities is straightforward.

This methodology provides a powerful tool both for controlling the behavior of
the relaxation algorithm and for understanding its behavior and limitations.' Given
the previous derivations one can compute the following values:

(1) Given the compatibility coefficients which just satisfy the effectiveness
constraint one can compute the lowest probability x which can be guaranteed
to preserve one pixel wide regions.

(2) Given that one pixel wide regions of label probability x are to be preserved,
one can find the compatibility coefficients which satisfy the stability constraint S

for this case. It may not be possible to satisfy the effectiveness constraint for
low values of x.

One can choose to abandon the effectiveness constraint in order to guarantee
that certain fairly weak one pixel wide regions will be preserved. In this case, one
can determine under what conditions an isolated pixel might remain converged S
(cases in which the effectiveness criterion fails).

' An important beneficial side effect of this understanding is that it allows for a much more

efficient implementation on a sequential machine. No relaxation needs to be performed at
pixels which are converged to label i and which have at least one neighbor which is also S
converged to label i. After the first few iterations of relaxation the vast majority of the
pixels in the image fall into this category resulting in a significant decrease in the
computational cost per iteration of relaxation.

... " . . .-.....................................•. •........................ . ............. "
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Empirical Findings.

The following two-label experiments (presented in figure 16) compare the
proposed center compatibility formulation with that used in Nagin. The experiments
show that the behavior of the Nagin formulation, in a converged neighborhood, is a
function of the initial probability assignments while the proposed formulation results
in the same behavior regardless of the initial probability distribution.

Figures 16a - 16d show the initial probability distribution for two examples.
The two examples both consist of a 64x64 background labeled 2 with a 32x32
foreground square labeled 1 and some fine image structure labeled I in the upper
left corner. It is the behavior of this fine structure during the iterative updating that
is of interest. The only difference between the two examples is that in the first
example initial probabilities are close to convergence to begin with (initial
probabilities of .95 and .05 for the two labels) while in the second example initial
probabilities are almost the same ( .48 and .52 for the two labels). Figure 16a
shows the probability of label 1 for the first example while figure 16c shows the
probability of label 1 for the second example. Figures 16b and 16d show the
corresponding probabilities of label 2. Since P(2), the probability of label 2, is
always I - P(l), we will show only the probability of label I in the remainder of
this presentation.

The initial probabilities of figures 16a and 16b are used to compute a set of
compatibility coefficients for the first example while figures 16c and 16d are used for
the second example. The relaxation update is then applied to a small image
corresponding to the fine structure in the two examples above. In this experiment
all of the labels in figure 16e are converged. The square in the lower right portion
of figure 16e corresponds to a single pixel and should be deleted since it is an
isolated label with no support in its neighborhood. The rectangle to the left of the
square consists of two pixels and should be maintained by the relaxation according
to our goals. The vertical one pixel wide structure above the square should also be
maintained and certainly the large multi-pixel structure in the upper left should be
maintained. 0

The results of applying the Nagin algorithm to the test image of figure 16e is
shown in figures 16f and 16g. Figure 16f shows the result after 100 iterations of
relaxation using the compatibility coefficients computed from figures 16a and 16b.
Figure 16g shows the corresponding result for the compatibilities computed from
figures 16c and 16d. As can be seen in figure 16f, when the initial probabilities of
labels were large the relaxation destroyed the one pixel wide image structures. On
the other hand, figure 16g shows that when the initial probabilities were especially
ambiguous, the Nagin relaxation preserves even one pixel regions.

Figures 16h and 16i show the corresponding results using the modified center
compatibilities. As can be seen, in both cases, the resultit-z labelings are identical to
each other and satisfy both of the constraints defined abov,. The one pixel region

~~~~~~~~~~~~~~~~~~~~~.'-. -.-.'.......-...-. .-. .. .. . -..................... .,.-... ...... . . , . .. -.- -,-, ,-, ,. .. . . . .... i
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VFgor 16: Cente Compatibility Modification - Eperimental Results.
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0
was correctly deleted and the one pixel wide structures were preserved regardless of
the initial probability distribution of the labels.

5.0 EVALUATING SEGMENTATION ALGORITHMS

5.1 Issues of Evaluation - Introduction

For all but the simplest scenes, a large number of alternative segmentations
are possible. Which of these alternatives is "the best segmentation" is a difficult,
and in most cases, an unanswerable question. However, in the context of a system
which utilizes multiple segmentation processes that produce many different
segmentations, some attempt must be made to deal with this difficult issue. Figure

17a, b, and c show three different segmentations of the scene in figure 17a. Which
of the segmentations is best and why? Clearly the goal of the processing is a
critical factor here.

This short chapter does not attempt to solve the difficult problems of
segmentation evaluation nor does it make any theoretical claims. Rather, it
delineates the issues involved in evaluating segmentation algorithms, considers
alternative methodologies for evaluation, and explicates the methodology used in this
thesis. -

The issue of segmentation has not been ignored by the image processing
community; a session of the 1979 Pattern Recognition Conference entitled "Scene
Segmentation and Interpretation" contains a number of papers which present
segmentation results for a common image. This is a step in the right direction since
at least the image processing algorithms could then be compared on the same image.
However, the evaluation of the segmentations was entirely subjective.

Papers which address the problems of segmentation evaluation include Nagin,
Kohler, Hanson, and Riseman [NAG79], [NAG80], and [NAZ83].

5.2 lames of Evaluation - Pattern Classification Paradigm

One standard methodology used in the field of pattern classification involves --

training the classifier on a set of training patterns, and then evaluating the classifier
on a different set of test patterns. The training process is generally an optimization
procedure which attempts to minimize the probability of incorrect classifications. In
the supervised approach, the correct classification of all training patterns is known.
Typically, either the form of the family of distributions is assumed or the form of
the discriminant function is assumed, and only the parameters of the distributions or
discriminant function need to be optimized. This methodology permits the objective
comparison of classifiers using error rate estimates computed from experiments using S

the patterns in the test set. It is important that the test set of patterns typify, and
in some sense model, the patterns which will actually be encountered in practice. It

.......... . .*~~° ....................
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(a) (b)

(C) (d,

Figure 17: Alternative Segmentations of a House Scene.
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is also important that the patterns represent an abstraction of the actual patterns so

that the training phase will not bias the classifier to anomalies present only in the
training set. The question asked in the evaluation phase is how well will this
classifier perform in general? Unfortunately, due to a variety of difficulties, this
methodology has not generally been applied in the field of image segmentation.

A number of practical factors, including the availability of digitized images
and the tremendous per image processing cost of segmenting even simple scenes
make the statistical optimization approach difficult in the image analysis domain.
Many published image segmentation algorithms have only been applied to a very
small number of images. Furthermore, often those same images were used during the
algorithm development phase. This means that the algorithm is evaluated on a test
set that ii identical to the training set. This makes any generalization as to the
power of the published algorithm for a certain class of images questionable since the
algorithm may be sensitive to anomalies of the small set of training images.

Applying the pattern classification paradigm to image analysis suffers from 0
more fundamental problems. In scene segmentation the correct segmentation is not
generally known. An important consideration in evaluation of a segmentation is the
global purpose of the segmentation. In cases where the goal is well defined, such
as counting blood cells in a given field, the segmentation algorithm may be
indirectly evaluated according to the global result: did the algorithm detect the .
proper number of blood cells, how many cells were missed, and how many false
alarms occurred. Errors may not be uniquely attributed to the segmentation process
since the errors might be due to the classification component or some interaction
between the segmentation and classification components. When the goals of a
segmentation algorithm are well defined and the results can be quantitatively
compared to accepted solutions, then the pattern recognition paradigm is applicable.

When segmentation algorithms are applied to more complex images such as
natural outdoor scenes and the goal is to build an accurate three dimensional model
of the scene, this evaluation methodology becomes much less viable. Building a
three dimensional model from the segmentation is a complex and poorly understood •
task. Comparison of any models produced using different segmentation algorithms
would require some evaluation function for comparing differences between the real
world and the constructed models. Such an evaluation function would have to
determine which objects in the scene were correctly detected and how accurately the
objects were located, as well as which objects in the scene were missed and which
objects were incorrectly included. Clearly, such an evaluation function would be
quite complex and dependent on the goals of the external system which requests the
segmentation. Again, comparison of alternative segmentation algorithms is complicated
by the potential interaction between the segmentation process and the semantic
interpretation process. Tuning the interpretation component to each segmentation
process might be required. A major practical constraint preventing experimentation
with the use of such a "high level" evaluation paradigm is the absence (at this time)
of an automatic interpretation system that can be easily run on many images.
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In conclusion, it is desirable to evaluate segmentations in the global context of
the processing goal directly, but this evaluation in context is not currently feasible
except for very simple and well understood images. This implies that some attempt
must be made to evaluate segmentation algorithms directly based on the
segmentations produced.

5.3 Possible Evaluation Methodologies

Segmentations have generally been evaluated subjectively ou one or two
images. Although this may lead to insights into the power or limitations of a
particular algorithm, this evaluation methodology is not adequate for the quantitative
comparison between two similar segmentation algorithms applied to a large set of
test images. As argued above a quantitative evaluation based on the global result
of the segmentation process is desirable but not very feasible at this time. The
remaining alternative is to evaluate the two dimensional segmentation directly. In
order to quantify the evaluation of a segmentation, one might compare the 6
segmentation against a registered model of the scene. The pixel misclassification
rate, or frequency of edge errors, could be used to evaluate the segmentation. The
use of such simple misclassification rates does not always capture all of the error
information desired. Sometimes a single misclassified pixel may alter the connectivity
structure of the image, while other misclassified pixels might not; an additional S

boundary segment may be superfluous or may separate a single correct region into
two pans. Thus, a more complex evaluation function based on the global utilization
of the segmentation will eventually be desirable. The more immediate problem is:
where is the correct reference model to come from? Human generated hand
segmentations are one possible source. Using segmentations produced by humans as
a model may introduce unrealistic expectations since these may embed implicit biases
and expectations, knowledge about object shapes, sizes, and colors, and knowledge
about perspective, shading, texture, and depth.

One way to attack the difficult problem of obtaining goal segmentations is to
consider several different classes of images along a complexity dimension. At the
most complex extreme one finds the natural outdoor scenes with all of the
difficulties implied by natural light, complex shapes, and textured surfaces; while at
the other extreme one finds very simple scenes with no noise, no texture, and none
of the complex intensity gradients that make segmentation difficult. It may be
impossible to define a correct segmentation in the outdoor scenes, but a correct
segmentation may be easily and unambiguously defined for the very simple scenes.

Consider a very simple black and white image of a bright square superimposed
on a dark uniform background. In this simple image there can be no ambiguity
about the correct segmentation. All segmentation algorithms should produce a
perfect segmentation of this simple scene. Unfortunately, the results on such a
simple scene cannot be generalized to the domain of complex outdoor scenes.

0 S
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5A Evaluation MethodoloU

One can generate more complex scenes along a continuum by adding those
image characteristics found in natural scenes which make them difficult to segment.
The presence of (let us say Gaussian) noise due to the photographic and digitization
processes is one of these characteristics. Some of this noise is due to the S
transformation of the continuous world into the spatially discrete representation with
discrete feature values. The importance of problems due to certain forms of noise
are sometimes overstated, since these problems may be reduced by increasing the
hardware quality (better lenses, larger format negatives, or higher resolution scanners)
or by simple image enhancement operators [ROS76b], [PRA79], [PRA78]. The other
characteristics of the natural outdoor scene which pose problems are due to
photometric and geometric considerations. These characteristics include intensity
gradients, shadows, highlights, and surface texture.

By modeling these characteristics one can introduce them individually or in
groups into the simple images to obtain more complex images based on the same
physical model. This continuum of artificial images provides a powerful tool both
for segmentation algorithm development and evaluation. In the development of
segmentation algorithms one can begin with simple images and add one element of
image complexity at a time. Behavior of the algorithm when applied to each of
these characteristics helps to pinpoint the strengths and weaknesses of the algorithm, _

and failures of the algorithm often suggest modifications which might overcome some
of the weaknesses.

With the relatively simple images competing alternative segmentation processes
can be evaluated quantitatively using simple pixel misclassification methods. As the
images become more complex and approach natural scenes in complexity, the same
problems of evaluation as discussed for natural scenes occur and quantitative
evaluation becomes less meaningful.

In this dissertation algorithms are quantitatively evaluated and developed using
simple constructed Images. The test images are made more complex by introducing 0
various image characteristics that are found in natural images. The final algorithms
are then demonstrated on complex outdoor scenes and the segmentations are
qualitatively evaluated.

6.0 NON-SEMANTIC KNOWLEDGE IN THE SEGMENTATION PROCESS

A complete segmentation system might contain several segmentation algorithms
which could be differentially applicable to different classes of images or even to
different portions of a single image. Issues of interaction between the separate 0
algorithms is explored in chapter 7. This chapter addresses the problem of

*.- instantiating a particular segmentation algorithm. Section 6.1 defines segmentation -
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processes and discusses their generation in general terms. The remainder of the
chapter applies these general techniques to the modified Nagin segmentation
algorithm. By examining particular types of image segmentation problems, we
demonstrate the value of combining multiple types of non-semantic knowledge to
improve the segmentation process. In particular, we address issues of
undersegmentation due to missed clusters and oversegmentation due to clusters
derived from micro-texture, intensity gradients, and "mixed pixel" regions in the
modified histogram cluster based segmentation algorithm. Addressing these issues
requires us to deal with the relationship between feature space analysis and local
and global characteristics of image space.

6.1 A Segmentation Process

A segmentation algorithm consists of a set of image operators embedded in a
control structure. Let us assume that it has been decided that a particular
segmentation algorithm is appropriate for a given image. In order to apply the
segmentation algorithm to the image, a number of important decisions must be
made. The set of decisions may be split into two parts: the selection of the image
features which serve as input to the algorithm, and the selection of appropriate
values for any of the parameters needed by the segmentation algorithm. A
segmentation process is then defined to be the instantiation of a segmentation
algorithm by selection of the appropriate parameters and image features such that 0

the algorithm may be applied to a particular image.

The selection of parameters is often assumed to be integral to the algorithm
itself. Consider an algorithm which segments images by thresholding, where selection
of the threshold is based on the global histograms of the intensities in the images. Is
the selection of the threshold part of the segmentation algorithm or should it be
considered independently? Is the use of the intensity feature an integral part of the
algorithm or could a more intelligent feature selection decision (based on the
particular image to be segmented) be isolated from the algorithm?

A segmentation algorithm represents a specific instantiation of a set of
assumptions or heuristics about properties of the image which provide useful
information with respect to segmenting the image into regions. Regions are usually
assumed to correspond to objects, surfaces, or visually distinct object parts in the
original three dimensional scene. For any segmentation algorithm these assumptions
or heuristics are often inadequate for segmenting images which somehow violate the
assumptions embedded in the algorithm. It is likely that a single segmentation
algorithm will not be adequate to segment all images, and that the algorithm will
make segmentation errors.

The limitations imposed on the segmentation by the segmentation algorithm's
assumptions or heuristics result in an environment similar to Hearsay II with its
errorful and incomplete knowledge sources. The solution to this problem in Hearsay
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H was to allow knowledge sources to propose hypotheses which were then supported,
contradicted, or modified by other knowledge sources based on different information.
Applying this general philosophy to the design of a segmentation system, any
segmentation algorithm might propose a set of parameters based on a set of
assumptions or heuristics. Other sources of knowledge may then modify the initial
set of proposed parameters. This chapter develops one approach to the problem of
determining which segmentation process should be instantiated for a given
segmentation algorithm and a given image.

The information brought to bear on the initial parameter selection may be
derived from semantic expectations of the contents of the scene, from syntactic S
characteristics of the expected segmentation, or from global measurements of the
original image. This chapter will only address the latter two alternatives.

The assumptions embedded in a particular agorithm typically fail for certain
image characteristics. For instance, clustering algorithms are often sensitive to
intensity gradients or micro texture. These image events or characteristics result in
broad or mLItiple clusters in the feature histogram, which is in violation of the tacit
assumption that a region will appear as a single distinct cluster easily separable from
the clusters corresponding to other regions. Edge detection algorithms often have
difficulty with edges whose spatial scale is different from the edge detection operator
used. Image and algorithm dependent parameter values are selected or modified
based on a number of general assumptions about images. These include the
assumptions that adjacent and very similar pixels probably belong to the same object,
that strong image gradients often indicate object discontinuities, assumptions related
to the expected behavior of the segmentation in terms of region sizes and shapes, as
well as expectations derived from a partial interpretation of the scene.

6.2 Cluster Selection: A Parameter Selection Example

The remainder of the chapter focusses on the selection of clusters in the
Nagin segmentation algorithm detailed in chapter 3. In the Nagin algorithai, clusters
are initially selected from a one dimensional histogram of a single image feature | -
The given image was partitioned into arbitrary square subimages and clusters were
selected independently in each of the subimages. These clusters represent a set of
initial hypotheses as to the set of optimum clusters present in each subimage. The
techniques proposed below attempt to modify the initial hypotheses by adding
clusters which may have been missed, deleting cluster, which do not seem to
correspond to image structures, and merging clusters in order to satisfy certain
image constraints.

' Note that the cluster selection might be profitably extended to higher order feature spaces,
and in fact Nagin used 2-dimensional histograms. The techniques for cluster validation
presented below may be easily generalized, since they are not highly dependent on the
dimensionality of the feature space in which clusters are selected.
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The following section examines how clusters which may have been missed in
one subimage may be recovered by using consistency cues obtained from neighboring
subimages. Later sections of this chapter show how characteristics of the initial
rough segmentation might guide the elimination or merging of clusters. Certain
image characteristics have traditionally confounded algorithms which segment based
on clusters, including:

(1) Micro-texture, which can lead to serious oversegmentation into many small
regions,

(2) Wide intensity gradients which can introduce artificial boundaries within S

essentially uniform areas,

(3) Blurred (or mixed-pixel) boundaries which can lead to long narrow regions
separating "correct" regions

(4) Highlights and specularities which can result in small regions where no surface
discontinuity exists. (note that these regions may provide important cues as to
the surface orientation but are not really desirable in the final segmentation).

For each of these image characteristics a simple knowledge source attempts to
correct the current cluster set for errors which might be due to these image
characteristic.

6.3 Pre-processing

In order to increase the reliability of the initial cluster selection a noise
reducing preprocessing algorithm (Overton and Weymouth 1979) was utilized. This
algorithm is an iterative image smoothing function which can reduce minor image
variation without destroying image structures or blurring high-contrast boundaries.
The algorithm is essentially a weighted averaging process where each pixel in a three
by three neighborhood contributes to the central pixel's update in direct proportion
to its similarity with the central pixel and at a rate inversely proportional to a local
variance of intensity about each neighbor.

When this algorithm is applied to an image, the feature histogram of the
processed image often shows much better separation of clusters than the feature
histogram of the unprocessed image. Figure 18 shows an example of the effect of 0
five iterations of this preprocessing. The upper left of the figure shows the original
image while the lower left shows the smoothed image. The corresponding
histograms are shown to the right of the images.

6.4 Cluster Addition Based on Sub/mage Consistency
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In order to reduce the possibility of missing clusters that correspond to
relatively small regions split between two subimages, Nagin computed the feature
histograms using overlapping subimages. This reduces the possibility of missing a
cluster which falls half in one subimage and half in the neighboring subimage, but
if the cluster is somehow obscured in either subimage, inconsistent cluster sets may
result.

This section addresses the problem of missing clusters in the initial set of
clusters by providing a mechanism for cluster addition based on consistency between
cluster sets in adjacent subimages. Clusters can also be filtered and tuned to
improve consistency with both the data in the subimage and the clusters to be S

added.

Inconsistent Cluster Set Example.

The mechanism for cluster selection proposed here utilizes the expected
consistency between the cluster sets of adjacent subimages. Figure 19 shows a
boundary between two adjacent subimages in a hypothetical example. In the left
subimage, the two clusters at intensity i=10 and i=30 were found. These two
clusters in the feature space give rise to the two regions shown in the left subimage.
In the right subimage a single cluster at intensity i=12 was found. The right
subimage is therefore uniformly labeled with the cluster at intensity i=12. Regions 5

corresponding to each of the three clusters abut the artificial subimage boundary.

Given the spatial distribution of the regions at the subimage boundary (figure
19) a number of hypotheses about the corresponding clusters from the two subimages,
are possible:

(1) The clusters in both subimages are distinct and correct. This assumption
implies that boundaries a and b are real image boundaries.

(2) Cluster '=10 and the cluster i=12 (in the separate subimage histograms)
correspond to the same image population. This implies that:

a. the boundary "b" is a correct boundary; or

b. the right subimage is missing a cluster in the vicinity of i=30; or

c. The cluster i=30 is an incorrect (superfluous) c!uster which should be 5

deleted (ie. no region with i=30 really exists)

(3) Cluster i=30 and the cluster i=12 (in the separate subimage histograms)
correspond to the same image population. This implies that:

a. the boundary "a" is a correct boundary; or

* 5
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Figure 19: An Exmpie Boundary between Soblanages.
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b. the right subimage is missing a cluster in the vicinity of i=10; or

c. The cluster i=10 is an incorrect (superfluous) cluster which should be
deleted (no region with i=10 really exists)

The alternatives of the third case seem to be less likely since the hypothesis
that cluster i=30 corresponds to the same population as the cluster i=12 seems less
tenable than the hypothesis that cluster i=10 and cluster i=12 represent the same
population. Note that ideally, clusters from the same population would be identical
in the two subimages, but in reality, sampling errors, slow spatial gradients, and
other image events will result in different observed clusters in the two subimages S

but the difference in observed cluster locations should be relatively small.

In the case that the first hypothesis holds or hypothesis 2a holds, no change
to the set of clusters for one of the subimages is necessary. In the case that
hypothesis 2b holds, the cluster set of the right subimage should have a cluster
around i=30 added. In the case of hypothesis 2c the cluster at i=30 sh--uld be
deleted from the cluster set ef the left subimage.

We discard alternative 2c since we assume that the inclusion of the cluster at
i=30 was based on a considerable body of local evidence ( the cluster was found in
the histogram, validated, and was not deleted by any of the cluster deletion - .
mechanisms discussed below).

The set of possible actions is thus reduced to a) leaving the cluster sets alone
or b) adding a cluster near i=30 to the right subimage. The cluster addition
knowledge source will propose that a cluster near i=30 be added. Later processing
may validate this cluster, in which case the cluster was probably missed by the

clustering algorithm. On the other hand, if the cluster cannot be validated then the
cluster will be deleted again, restoring the original cluster set. This implies that the
decision between the cases for which the cluster sets are correct and for which
clusters must be added can be effectively deferred by adding the clusters.

Summary of Cluster Addition.

In order to increase the inter-subimage cluster consistency, as discussed above,
the algorithm summarized in figure 20 was developed. The algorithm consists of
two major parts. In the first phase the algorithm attempts to determine all possible
cluster additions which would make the subimage consistent with neighboring
subimages. The second phase filters these suggestions to eliminate clusters which

have no support in the subimage and shifts cluster means slightly to develop a set
of canonical clusters which may have been suggested by different subimages.

Figure 21 shows a hypothetical subimage in which clusters were found at
i=12, 19, 22, and 30. We use i=x to denote a cluster found at intensity x in the
feature histogram. For each neighboring subimage the clusters which correspond to
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I For each direction locate all clusters which
abLut the current subimage

Sequentially match these clusters

against the set of clusters in the subimage

An abbuting c!uster is considered to be matched if

(a) the cluster is within a threshold of
an internal cluster.

(b) and the cluster differs from the nearest
internal unmatched cluster by less than any other

unmatched abbuting cluster differs from its nearest

internal cluster. S

(c) and the cluster match does not cross any previous
matches

This step produces a set of matched clusters as well

as a set of unmatched abutting clusters

(2) Fo- all sets of matched clusters and sets of unmatched
clusters validate the clusters by the following procedure

(a) Group all unmatched clusters which lie
withind:I thetaf a nct he0r an d g roup , nterior
clusters with the abbuting clusters which
matched chem

(b) For all cluster groups. compute the relocalized
histogram for that cluster group

(c) Select the histogram mode within theta of any

of the contributing clusters as the representative
for that cluster group

(d) Filter out any cluster group whose mode has
a frequency of less than some threshold

0-°

Figure 20: Cluster Addition and Validation Algorithm.
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Figure 21: Sbimage View of Neighboring Cinders.
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the regions which abut the central subimage are matched against the current clusters.

The matching process is straightforward (see figure 22 for the case of
matching the clusters abutting the subimage from above). The closest clusters which
differ by less than some predefined threshold (6 = 5) are considered to be matched.
Matched clusters are eliminated and the next rmatch is found until no more matches
can be found. Matches are not allowed to "cross" previous matches. In figure 22,
the first match pairs the labels at i=21 and i=22 while the second match pairs
labels at i=10 and i=12. No further matches are possible. Matching i=24 and i=19
would "cross" the match between i=21 and i=22 since i=24 is greater than i=21
while i=19 is less than i=22. Matching i=24 and i=30 would violate the threshold 0
restriction limiting matches to clusters whose means differ by at most five.

In the case of figure 21, the unmatched clusters would be i=24 from the
subimage above, i=3 from the left subimage, i-40 from the right subimage, and
i=43 from the subimage below. Furthermore, the clusters at i=10, i=11, and i=12
are matched, the clusters of i=21 above and i=22 at the center are matched, and
the clusters at i=40 and i=43 are matched. The unmatched clusters which are to
be added to the center subimage's cluster set would then be near i=3, i=24 and
somewhere near i=40 and i-43.

The validation of clusters is based on a subhistogram of the current subimage.
The subhistogram is defined for each matched cluster set as the cumulative
histogram for all subimage quadrants which directly abut the boundary from which
the cluster was propagated. This is simpler than it sounds, as exemplified by figure
23. The cluster i=3 was suggested by the left subimage, therefore the validation
subhistogram is over quadrants 1 and 3 or the left half of the subimage. For the
clusters near i=40 and i=43 the quadrants 2, 3, and 4 would define the
subhistogram. This mechanism focusses on the area of the image which presumably
contains support for the label to be added. The subhistograms for each cluster set
are searched for clusters near the clusters proposed by the neighboring subimages (at
i=3, and at i=40 and i=43 in this case). The cluster search is identical to the
algorithm used to select the clusters in the first place. The clusters that are
validated in this way are then added to the cluster set of the current subimage.
Typically cluster sets such as i=40 and i=43 will find the same unique cluster in the
subhistogram and coalesce the pair of suggested clusters into a single new cluster.
Whether or not the clusters are validated, coalesced, or rejected is a function of the
subhistogram and the cluster selection criteria. ]

Cluster Addition - Emphical Results.

The effect of the cluster addition algorithm can be seen from the following
experiments. Figure 24 shows the test image for the first set of experiments. This
artificially generated image depicts a T4 bacteriophage resting on an E. Coli
bacterium. AU of the regions in this image, except the background, have known
fixed means and variances. For the background region a slow non-zero gradient is
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Figure 22: Cluster Matching Example.



V0

NonSemantic Knowledge in the Segmentation Process 75

0

for cluster
at i 3

for clusters

at I=40 and i 43

400

430
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introduced such that the local mean of the background is brightest in the upper left
corner and dimmest in the lower right corner. A large region with an intensity
gradient is difficult for the region algorithm to capture as a single cluster since the

.- region segmentation algorithm in effect assumes that clusters correspond to regions of
uniform intensity. Note that the gradient has the effect of "spreading" out the
background cluster so that other peaks are more difficult to find and the
background region is at least partially labeled with clusters found within the broad
background cluster (see figure 25a for the global feature histogram of this image).
This results in a failure to detect some foreground regions while fragmenting the
background region as seen in figure 25b.

A global segmentation of this image lead to inadequate image partitioning
since the wide distribution corresponding to the large background region tended to
mask the clusters cor --sponding to the smaller regions. A segmentation based on
localization into four subimages is shown in figure 26a. As can be seen, the virus
body and the background are not distinguished in the upper left quadrant and the
E. Coli Cell and the background are not distinguished in the lower right quadrant.
Figure 26b shows the result of applying a merging algorithm to delete the artificial
boundaries introduced by the localization procedure; this merging algorithm is based
upon the similarity of region features on either side of such a boundary segment
and is described in section 6.6.1 below. The quality of the segmentation in figure
26 is very poor since major structures are completely lost. Figures 27a and 27b
show the corresponding segmentations produced using the cluster addition algorithm
to make the subimage cluster sets consistent. These segmentations are not missng
the clusters which were missed in the previous figure and contain relatively fewer .. -'

segmentation errors while accurately reflecting the gross structure of the original
image. One problem with the segmentation is the artificial boundary due to the i ' --

localization in the upper center of the image was not removed. Typically, most of
, the artificia boundaries left by the conservative merge algorithm can be removed
" using the merge algorithm described in section 6.6.2 below.

It could be argued that cluster addition was unnecessary since further
localization would also locate the hidden clusters. The following example shows that 0

this is not always the case. Figures 28a and 28b show the result of segmenting by
* localization to 16 subimages of 16 by 16 pixels with no cluster addition. Further

localization would result in subimage histograms that are much too unreliable to
permit accurate determination of clusters. In this segmentation the proportion of the
image with correct clusters is increased (from 3/4 of the image with correct clusters
to 14/16 of the image with correct clusters), yet two subimages with missing clusters
remain. It is precisely these missing clusters that lead to the poor segmentation of
figure 28b. The fact that virus body is not distinguished from the background in the
first sector of the second row causes the algorithm which deletes the inter-subimage
boundaries to merge the virus body and the background throughout the
segmentation. Note that if a single cluster is missing in any sector then the entire
object which that cluster represented may be lost when artificial boundaries are

removed since the object and its surround are defined to be equivalent at that

..- '. . " " " " . . . .



78 Non-Semantic Knowledge In the Segmentation Process

R0

F

N
Y

1 1 2 11 AI~ 9 31 H~ Q 9 11 $ if

INTENSI Y

Figure 25: Global Segmentation of the Virus Image with Histogram.
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subimage boundary. The resulting segmentation after cluster addition is shown in
figures 29a and 29b. Again, cluster addition located the missing clusters in the two
subimages, producing a final segmentation with fewer gross errors.

Figure 30 shows that the same problems occur with images of natural scenes
(in this case a house scene) and that the cluster addition algorithm is effective for 0
this class of image as well. Figure 30a is the intensity of the house scene used in
this example. Figure 30b is the segmentation of the intensity image obtained
without the cluster addition algorithm and before artificial inter-subimage boundaries
are removed. The circle in figure 30b highlights a striking example in which two
clusters, representing the house wall and sky, were detected as a single cluster. As a S

result, the boundary separating these regions is missing. Figure 30c shows the
corresponding segmentation after these boundaries are removed. Figure 30d and 30e
show the corresponding segmentations when the cluster addition algorithm was
incorporated into the segmentation process. Again, the cluster addition algorithm
produced a qualitatively better segmentation and, in particular, separated the sky and
house in the indicated sLbimage.

6.5 Cluster Deletion

In this section we introduce several techniques which may be used to delete
clusters based on spatial information not available in the feature histogram used by
the cluster selection algorithm. The primary assumption of the region relaxation
algorithm (and in fact, most segmentation algorithms based on clustering) is that a
cluster in the feature space corresponds to a "useful" or "meaningful" region or set
of regions in the image space. This assumption can be violated in a number of
situations, including the following:

(1) The pixels which generated the cluster may not form reasonably large spatially
contiguous regions since the clustering typically does not utilize spatial
information. This could result in segmenting areas with microtexture into
hundreds of separate small regions.

(2) The clusters may be due to a digitization or blurring artifact. A small cluster 0

may be found between two significantly different clusters when the feature
values of "mixed" pixels, which straddle the boundary between two image
regions corresponding to the large clusters, have very similar feature values.
Thus, the small cluster generally corresponds to a very narrow region between
the regions corresponding to the large clusters.

(3) Multiple clusters may be found for a single region when the region exhibits
spatially varying feature values (e.g. an intensity gradient). The extra clusters
result in undesirable fragmentation of the region.

It is not possible to recognize these cases and delete the incorrect clusters
based on the feature space information alone. The spatial distribution of the pixels
associated with the cluster must be considered. The following sections propose
several independent knowledge sources which validate or reject clusters by estimating

• .. S
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the utility or contribution of that cluster in the final segmentation. Since the
relaxation is computationally expensive, we do not want to complete relaxation
process to determine the spatial validity of a given cluster. Instead we would like to
ily estimate the segmentation expected if the hypotheised custer set were
adopted.

The cluster utility of any cluster is then evaluated relative to this estimate
of the segmentation (utilizing the proposed cluster set). The estimate of the
segmentation, utilized in the following sections, is computed by lahling each pixel
with its initial best label and then allowing one and two pixel regions to be
absorbed by their surrounding regions. This segmentation estimate is rdatively
inexpensive to compute (as compared to the iterative relaxation algorithm) and quite
accurately predicts the gross structure of the final segmentation, as demonstrated by
the following example. Figure 31 shows the estimated segmentation for a global
segmentation of the virus image and the corresponding segmentation after forty
iterations of relaxation. As can be seen, the estimate and the final segmentation
agree quite well. One might even argue that given the striking similarity of the
inexpensive estimate and the expensive relaxation-based segmentation, that the
estimation algorithm by itself is adequate for many segmentation problems. We will
return to discuss this issue in the conclusion of the dissertation.

Note that a feature cluster will often project onto several distinct image
regions. Some of the regions formed by a cluster may be due to the effects listed
earlier, while other regions may correctly correspond to several objets, object parts,
or surfaces in the image. It is possible to extend the cluster deletion methodology
to each region, utilizing the same kind of information to make decisions separately
for each region, after the relaxation process. This approach is discussed in section 0
6.62 below. It is certainly desirable to delete clusters which do not correspond to
"meaningful" regions in the scene before relaxation (rather than relying totally on
the region merging) for practical reasons. Relaxation is, by far, the most expensive
component of the segmentation process, and the cost of the relaxation algorithm is
proportional to the square of the number of clusters. In addition, the number of
iterations of relaxation required to reach local convergence has been observed to
increase with the number of labels since each additional label at a pixel implies
higher initial ambiguity as to the correct labeling of that pixel.

Another observation about the cluster deletion processes which we are about to
discuss is that they are essentially an error correction mechanism for the cluster
selection process. However, each of the cluster deletion operators will
typically find very few corrections to make in any given image and, for most
subimages, no clusters will be deleted. Thus, the cost of computing the
clu ,tvr deletion tests must be weighed against the possible benefits of correcting the
cluster set using that particular operator. The cluster deletion tests developed •
were kept as computationally inexpensive as possible while still finding poor clusters.
Since cluster deletion is a relatively rare event in general, we have

A.................... ---...... '............................. ......... .. . .. . . . . :.?i
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intentionally selected too many clusters in the experiments presented below in order
to effectively evaluate the deletion operators.

Cluster deletion using region size.

If a cluster does not form any fairly large regions in the image, that
cluster may be due to image noise, highlights or micro-texture. Typically, regions
which can be attributed to any of these causes are not desirable in the
segmentation, although this is of course a function of the goal of the segmentation
process. The minimum size of regions to be found by the segmentation is
clearly a function of the image domain. Regions of less than three or four pixels
are probably not meaningful regions in almost all domains.

By performing a connected component analysis (ie. region labeling), one
can determine the maximum size, average size, and size variance for all regions
formed from a given cluster. If the size of the largest region is less than some
conservative threshold, then the cluster will be deleted from the cluster set. A
cluster which forms a large number of small regions which have little variance in
size is typically indicative of a distributed micro-texture. Although this information
may be valuable in later processing, we do not believe that it is generally desirable
to produce initial segmentations with large numbers of regions corresponding to
texture elements. . .

This particular cluster deletion operator was not used in our system for a
number of reasons:

(1) connected component analysis is a fairly expensive operation for a large
image with many regions; S__

(2) empirical experience indicated that very few incorrect clusters
could be detected with reasonably conservative threshold sizes; and

(3) empirical experience indicated that dusters which would have been deleted
by the size operator would generally be deleted by either the mixed-pixel
cluster deletion operator (section 652) or the compactness constraint
operator (section 653).

Cluster deletion for fted-plxel or blurred boundaries.

If image boundaries do not coincide exactly with the digitization grid (as
shown in figure 32b), pixels with intermediate values will be generated at an object
boundary (see figure 32c). Effects due to a discrete representation of continuous
image events are called aliasing effects in computer graphics. While "mixed" pixels
are desirable in computer graphics because they tend to produce a more visually
smooth edge, in image analysis they may form observable clusters in the histogram
space (as shown by figure 32d) leading to incorrect segmentation (as shown in figure

....
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32e). It is desirable to detect such dusters and delete them from the cluster set..-

There are image characteristics which can effectively discriminate these kinds
of clusters from desirable clusters. In particular, the regions formed by the mixed
pixel cluster tend to be narrow and each pixel in one of these dusters will be
adjacent to at least one pixel of a darker cluster (smaller mean) and one pixel of a
brighter cluster (larger mean). A simple statistic which estimates these properties is
defined as follows. Let Bi be the spatial distance, from pixel i, to the nearest pixel
with a brighter duster label and let a, be the spatial distance to the nearest
dimmer cluster label. We define a measure at each pixel to be

M(i) = 2 6.1

This measure is I when pixel i lies between and adjacent to a brighter and darker S
region and approaches 0 when i is in the interior of a large region. The operator
considered any Dj1 or Bi > 2 to be at infinity since we assume that no gradients
wider than this should be interpreted as blurred boundaries or mixed pixels. The
statistic for cluster C (of n pixels) is defined as the average score at each pixel:

M(i)

S(C) i C 62
n

This measure will be close to I for clusters which should be deleted and less than I --

for clusters which should be kept.

Once a cluster due to this effect is discovered, the cluster is deleted from the
set of clusters. The pixels in the cluster should be labeled with either the dimmer or
brighter neighboring cluster based on the pixel's feature values and the local image
context of the pixel. Deletion of the cluster automatically has the effect of
collapsing the decision boundaries that separated the deleted cluster and its dimmer
and brighter neighboring cluster into a single decision boundary at the deleted
cluster. This results in very ambiguous initial cluster affiliation probabilities at pixels
within the deleted clusters. The relaxation process can then use local spatial image
context to make the final decision for each pixel in the deleted cluster. 0

Figure 33a shows a subimage of the house seen in previous figures. The
initial segmentation is shown in figure 33b. Cluster are deleted if the mixed pixel
score is close to 1.0 ( t > .75 is considered close to 1.0 in this example). Figure

"It is also possible to attack this problem directly in the image space by locating the mixed
ieIs and modifying them to match their closest neighbors in a pre-PC g algorithm.
This approach was effectively used in color images by Prager [PRA79]; it is much less
reliable in monochromatic images.

" -7 '-. ".-. .: ...,.., -"- -.7 :' ' . ;.,',' -'. -: ' .' .''' ";,'.,i.-:.', '-, ,,., ...,. ..,. ., ..,'- ,, : .''-,.-'-'',' ';..S '
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33c shows the initial labeling after this cluster is deleted, while figure 33d shows the
final segmentation after 40 iterations of relaxation.

A problem occurs when two or more adjacent clusters are found to be
"mixed" pixel dusters. These relatively rare events are typically not due to
digitization artifacts but to fairly sharp intensity gradients in the image. The region @
with the intensity gradient leads to several distinct clusters in the histogram and is
therefore fragmented into contour bands and the "mixed" pixel cluster score for each
of these clusters may be quite high. These sets of adjacent high score clusters could
be handled in several different ways:

(1) they can be left to exist as separate dusters, .0

(2) they can be merged into a single separate cluster,

(3) they can be split between the low score dusters above and below.

The best choice for dealing with these clusters is not clear and seems to be -

dependent on the characteristics of the image and the goals of the interpretation

algorithm. The current implementation takes the most conservative path of allowing
all of the adjacent gradient clusters to remain. The information that these clusters
are not particularly desirable could be maintained so that, later, the application of
other duster deletion operators could favor merges incorporating these dusters or
that processes specific to gradient regions could be invoked over the resulting
regions.

Cluster Deletion asing Spat Compactness.

It is possible to find some undesirable clusters using a spatial compactness
measure computed across the regions produced by a cluster. Clusters due to
micro-texture and clusters in a sharp intensity gradient will often result in regions

with low compactness scores. However, some dusters correspondi to fine
structures in the image would also result in low compactness scores. A heuristic
algorithm was devised to locate those dusters which should be merged with
adjacent clusters based on the compactness score of the regions corresponding to the 0

cluster.

The compactness measure for cluster i was defined to be:

C(i) =Number of adiacencies between vixels in cluster i 63 -
2 " Number of Pixels in cluster i

For a cluster mapping to a set of one pixel micro-texture regions this score would".* -

be zero since cluster i pixels are never adjacent to other cluster i pixels. For a
region consisting of an infinitely long row one pixel wide the score would be one _
half since there are as many adjacencies as pixels. For a large globular region the
score would be close to one since the average pixel has four adjacencies shared by
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the four neighbors or an average of two adjacencies per pixel. The measure is
bounded between zero and one and provides an intuitively reasonable compactness -

score for clusters composed of multiple regions. In addition, the measure is easily
computed for a hypothetical merge of a set of clusters. Cluster merges are
proposed only for dusters with very low compactness scores for which the
compactness measure of the merged cluster is significantly higher than either initial
cluster.

In some cases, the clusters to be merged are separated by a strong boundary.
If this is the case, merging the clusters might eliminate some small image structures.
Therefore, we block the merging of clusters if the regions corresponding to those S
clusters are seperated by relatively high contrast boundaries.

The contrast measure used to block potential merges is a normalized measure
of the difference in edge strength within each of the two clusters which might be
merged and the edge strength along the boundary between the two clusters. The
measure is detailed in section 6.5.4

The virus image (Figure 24 ) is used here to demonstrate cluster deletion
based on the compactness constraint. The cluster selection mechanism was adjusted so
as to select even weak clusters. For the virus image, this resulted in nine clusters
where four is known to be optimal. Figure 34a shows the initial segmentation
(without relaxation) produced by these nine clusters. Figure 34b shows the
segmentation after the compactness ba cluster deletion algorithm. Figure 34c shows
the same result with one and two pixe regions suppressed. Figure 34d shows the
segmentation after forty iterations of relaxation. All of the five superfluous clusters
were correctly deleted by this operator. In general, this algorithm will only delete
those clusters which correspond to micro-texture or to intensity gradients. In this
example, it happened that all of the clusters deleted fell into these types.

Cluster Deletion using Edge Informatlon.

As described earlier, wide intensity gradients can often lead to multiple -

clusters. The goal of the processing proposed in this section is to locate adjacent
clusters which correspond to continuously and slowly varying feature changes over
possibly wide areas of the image. Thus, the assumption that there are no abrupt
changes (i.e. large magnitude in the gradient) across the intensity gradient allows one
to expect very weak edges (intensity gradients) between image regions corresponding
to a single continuous intensity gradient; this contrasts with the edge measures
between regions belonging to different image structures. In short, multiple clusters
from the same gradient should not have edge information in the image to support
the separation of those clusters. The method proposed for detecting such clusters
attempts to bring edge expectancies into the cluster selection process. Once detected,
these clusters which are not separated by strong edges could be merged. Naturally, 0
this cluster evaluation only makes sense when the clusters to be merged form at
least some adjacent regions in the image.

. . . . .
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Any measure of edge strength between regions formed by adjacent clusters
should be normalized by the average edge strength found in the interior of these
regions. The actual contrast measurements considered were based on the raw
horizontal and vertical inter-pixel differences and the edge probabilities produced by
the edge relaxation algorithm after a varying number of iterations.

Several inter-cluster contrast measures were considered for comparing the
contrast measure over the population of edges between pixels interior to cluster i
(denoted Eli), the set of edges interior to cluster j (denoted Ejj), and along the
boundaries which separate regions formed by clusters i and j (denoted Eid).

The first measure considered was based on the Neyman-Pearson statistical test
as proposed by Yakimovsky [YAK73]. Given the size of Eli is k edges and the size
of Eij of is m edges and the size of Ejj is n edges, the measure is defined as:

M cr(Eji U E;k+m or(Eje U Ein+m r(Et U E +n 6.4

The measure is small when two populations have identical distributions and large
when the two populations differ either in their mean or variance. The terms in this -

measure correspond to the Yakimovsky measure applied to the following three S
populations:

() E( i and .

(2) Egj and Eij,
(3) and Ei and Ejj.

If the edge population associated with regions in either cluster is significantly weaker
than the edge contrast population between the clusters, or if the the edge contrast
populations within the two clusters differ significantly then this measure will be
large.

Unfortunately, this measure was not found to be reliable in consistently
locating clusters lying within a single intensity gradient. In particular, when the
regions were large, the statistic could detect differences in the mean and variance of

" the populations which were not visually discernable by a human, while the measure
did not always detect population differences when the regions were small and
visually discernable. Furthermore, if the Eij term were smaller than both the Eli 5

and Eb terms, indicating that no edge was present between the clusters, the measure
still produces a high score since the populations are indeed different.

Another measure considered was a modification of the Yakimovsky measure
proposed by Nagin [Nag79]. Although somewhat more reliable, the measure was also S
ineffective in consistently locating the clusters which lay within a single intensity
gradient. This measure was not sensitive to the cluster sizes, but also failed when

. . .
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Eij was smaller than Eli and Eh. -

The most reliable measure found for merging clusters which lay within a
single intensity gradient was a simple normalized difference of the means of the
contrast measure populations:

M = Max ( i) "(Eii) IL (O - I 0(EOi ) (-i) - (Ei) 6 5

cr(E~j) + 'rEU c(Ejj) + cG(Ejj) c(Eii) + cr(Ej)

Figure 35 shows an example in which the measure is effective. The central
rectangle of figure 35a has a wide slowly varying intensity gradient across it. Figure S
35b shows the histogram computed from 35a. Rather than two or even three distinct
peaks corresponding to the foreground rectangles the histogram is a noisy blur

between the clusters corresponding to the left and right rectangles. Figure 35c
shows the estimated segmentation based on the five clusters chosen from this noisy
histogram. Table 1 shows the edge measures for each pair of adjacent clusters. 0
As can be seen, the average edge strength between cluster I and cluster 2 is very
much larger than the edge strength between any other pair of adjacent clusters.
Figure 35d shows the segmentation after all cluster pairs with low edge scores
(clusters 2 and 3, 3 and 4, and 4 and 5) are merged.

The basic premise of this cluster deletion approach is that there will always be

significant edges between regions of interest in the image. This assumption is not
always valid, as demonstrated by the virus example of figure 24. In the lower right
corner of the virus image there is little or no edge information to support the
boundary between the background and the E. Coil cell. It was only through the
inter-subimage cluster addition algorithm that we were able to distinguish the .
background and E. Coli cell at all."

Although the gradient cluster detection rechanism is fairly robust, at this
stage in the algorithm's development, nnri-gr. lient clusters are occasionally deleted.
Deletion of a non-gr,-lient cluster can of course result in significant 0
undersegmentation, however if gradient clusters are allowed to remain the gradient
region will typically be split into several fairly large regions producing a slight
oversegmentation. One avenue that is still being explor-,d for merging these clusters

(or regions) is based on a fit of a planar surface to each cluster (or region).
Regions or clusters could, of course, be modeled by more sophisticated surface
representations as well (e.g. bicubic splines) [HAR79]. If adjacent clusters have very S

similar best fit surfaces then the clusters (or regions) should probably be merged.

"Note that the boundary is almost implied in such cases. Humans use a variety of
mechanisms inc!uding subjective contour mechanisms and high level models to locate such .- -
boundaries. A slowly changing intensity gradient may represent a boundary between
objects or a slight change in surface orientation of a curved surface. Distinguishing these
cases without precise goals and world knowledge may well be impossible.

--. .. . . . . . . . . . . . ."
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6.6 Region Merging

The relaxation process produces separate segmentations for each of the
localized subimages. In order to obtain a single segmentation for the entire image, it
is necessary to combine regions in adjacent subimages if they are pan of the same
image structure. Beyond this particular need, some of the criteria used to merge or
delete clusters may be applied to merge or delete regions and thereby improve the
segmentation by reducing oversegmentation. A decision to delete a cluster has an
impact on all of the regions which belong to the cluster; by making the same types
of decisions made for clusters on a region by region basis we can utilize the same
knowledge to make more localized decisions. Many of the issues shown to be 4
important for cluster deletion are incorporated into the region merging mechanism
developed here. By making the merge decisions at the level of regius we actually
obviate the need for the cluster deletion.

Merging Regions Across Submage Boundaries.

Nagin [NAG79] merged adjacent regions across subimage boundaries when a
statistical test (similar to the measure used by Yakimovsky [YAK73] and discussed in
section 65.4) indicated that small region areas on either side of the boundary could
have come from the same population. Note that the merging criterion was based
solely on a local measure of the candidate regions near the subimage boundary.

In the ideal case a threshold is selected for this measure such that all artificial
boundaries are deleted, but no correct image boundaries are deleted. The failure to
merge two regions which correspond to the same semantic structure might lead to
oversegmentation. On the other hand, a single incorrect merge could have
devastating effects, causing the indirect merging of several large distinct structures.

, Figure 28 is a case where an undesirable merge occurred. Figure 28a shows the
sixteen subimage segmentations before remerging, while figure 28b shows the

S.'. segmentation after remerging. The poor quality of the final segmentation is due to
two incorrect merges through the subimages which had missing clusters. The '
remerging problem is particularly difficult when one of the subimages is missing a -
correct cluster. In this case there is little or no local support along the subimage
boundary for the proposition that the two regions should not be merged as shown in
figure 36. In this figure the right subimage containing R3 is presumed to be
missing a cluster; thus a merge of RI with R3 and R2 with R3 will have the
undesired effect of indirectly merging RI and R2 and losing the boundary between
these regions in the segmentation. In this example both merges are locally correct,
and the merge will propagate the undesirable effect of the missing duster in the
right subimage to the left subimage and perhaps indirectly to other subimages.

• Figure 37 shows a remerging example with some possible outcomes. Figure
37a shows an image divided into four subimages. Figure 37b shows the regions
produced by the localized segmentation process. Figure 37c shows the ideal
segmentation in which all merges have been correctly performed while figure 37d

.- 9
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shows the effect of not merging regions two and eight and regions four and six.
Finally figure 37e shows the effect of the single incorrect merge joining regions one
and four.

Although the merge criterion of locally identical population statistics used by
Nagin is quite reliable, it is, in general, impossible to select a threshold which 0
performs all desirable region merges without making any undesirable merges. In
order to improve the overall performance of the segmentation algorithm two steps
were taken:

(1) the merging criterion was extended to include a more global region measure

(2) and a conservative merging threshold was selected.

The merging criteria employed here permits a merge between two regions in
different subimages which are adjacent at a sub-image boundary only if both a
local constraint and a global constraint are satisfied. The local constraint is identical

to the constraint used by Nagin. This constraint is satisfied when the population
similarity measure between the small areas on either side of the boundary is below
a threshold. The global constraint is satisfied when the same measure computed
across the complete regions is below another threshold. By using a local and a
global threshold one can use a more liberal local threshold, which alone would allow
some undesirable merges to occur. The global threshold will block those merges
which would be incorrect. In the case of missing clusters (see figure 36), both
possible merges of RI with R3 and R2 with R3 would satisfy a local constraint, but
neither RI nor R2 should be able to merge with R3 based on the global constraint.

Note that using a global merging criterion alone would not be as effective since
fairly similar regions with a high contrast edge at the boundary should also not be ,.
merged. In this case the local constraint would block the-merge.

Region Merging Based on Other ConstrmInts.

Even after careful cluster selection, relaxation, and merging across subimage
boundaries, the segmentation typically contains some adjacent regions which
correspond to the same image entity and which should be merged. In the algorithm -
presented below a number of different knowledge sources, using different
information, interact to select desirable region merges. Each knowledge source

embeds some heuristic strategy as to whether a region should be merged with any
of its neighbors, and if so, which of its neighbors it should be merged with.
Although the actual knowledge sources used below are very simple, more complex S

knowledge sources and varied merging knowledge sources are possible. Specialized
knowledge sources which detect very particular image events can be designed and
one could even utilize feedback from the semantic interpretation system in making
merge decisions.

_0
The algorithm for region merging is abstracted in figure 38. The first phase

of the merging algorithm generates a set of merge hypotheses: a set of regions
which are to be considered for merging with one of their neighboring regions. The
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second phase evaluates the region merge hypotheses by applying a set of knowledge
sources (described below) to each merge candidate region. For each candidate, the
merge with each of its neighbors is considered. The knowledge sources applied in
this phase influence a merge score which represents the efficacy of each possible
merge of the candidate." The third, and last, phase filters the merge hypotheses by
merging a candidate with its neighbor with the best merge score if that merge score
is sufficiently high. These phases may then be iterated until no more merges take
place.

Generating Merge Hypotheses:

It is possible to simply allow all regions to be candidates for merges and
count on the filtering process to reject the undesirable merges. This would entail
considerable computation in determining merge scores for all region adjacencies in
the image. In order to reduce this cost, knowledge sources could add regions to be
considered for merging to the set of merge candidates based on some characteristics
of the regions or external input such as feedback from a semantic interpretation
process.

In this thesis no such knowledge source was utilized: all regions were made
merge candidates.

Evaluating Merge Hypotheses:

For a given merge candidate region it is necessary to determine:

(1) whether the candidate region should merge with any of its neighbors and

(2) which of the neighbors corresponds to the "best" merge.

Both of these decisions require some evaluation function which will determine the
similarity of two regions. The evaluation function is defined as a product of terms,
where each term is independently computed by separate knowledge sources. The
contribution of each knowledge source will be defined to be large (greater than 1.0) S
when two regions being compared are different (in the characteristic feature
measured by that knowledge source) and small (in the interval 0.0 to 1.0) when the
regions are very similar. When a given knowledge source cannot contribute any ..-

information then the merge factor computed should be 1.0. The global merge score,
computed as the product of all of the merge factors, is then greater than 1.0 when
the merge should not occur and less than 1.0 if the merge is reasonable. The
algorithm will merge the candidate region with the neighbor with the lowest score if
that score is less than 1.0, otherwise, no merge is performed.

'n Thc current implementation utilized a simple multiplicative update rule, where each
knowlcdgc source simply multiplies the accumulated merge score by some evaluation
computcd by the knowledge source.

) •
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This merge evaluation function has a number of d.-sirable characteristics:

(1) An arbitrary number of knowledge sources could contribute to the decision.

(2) The order of knowledge source evaluation has no eff,.ct. This implies that with
proper hardware all of the knowledge sources could be computed
simultaneously.

(3) The effect or contribution of each knowledge source can be separately tuned.
One cat. dynamically enable or disable a knowledge source. It should even be
possible to limit or enhance any one of the know ledge sources dynamically
using knowledge about the particular image domain or even using the current
partial model developed by the model building component of the image
interpretation system.

(4) It is possible for a single knowledge source to effectively veto a f :ven merge
or to force a candidate to merge with one of its neighbors.

The region merging algorithm was initially implemented using only four
knowledge sources based on the following assumptions:

(1) Global Difference of Region Means. The regions to be merged should have . -

roughly the same mean of feature values.

(2) Global Difference of Region Variances. The regions to be merged should .... *

have roughly the same variance in feature values. : -

(3) Minimum Candidate Region Size Constraint. Very small regions should almost
always merge with one of their neighbors. .

(4) Minimum Region Connectivity Constraint. It is desirable that regions to be

merged share at least a minimum length of common boundary.

Each of these knowledge sources is discussed briefly below.

The intensity similarity of region means is probably the most important factor
in deciding whether the regions should be merged. This knowledge source simply
returns the scaled and normalized difference in the means of the two regions. For
regions Ri and Rj the measure is defined as:

= l ) (R) )- I (R)

Ti a(Rj) + cr(Rj) 6.6

where T1 is the threshold on the normalized difference. When the norma!ized

difference of means is less than TI, then M1 is less than one, favoring the merge of

the regions. The implementation actually includes a lower-bound on M1 such that
M1 will not force a merge when there are other counter-indicators. The graph of
figure 39a shows the merge factor (M1) returned by this knowledge source as a

................................... ... --. ". -
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function of the measurement of the normalized difference of means.

It can be argued that regions with very different variances should probably not i
be merged, as in the case of regions with easily discernable texture differences, but
the same average intensity. This second knowledge source serves to inhibit merges
between regions of very different variances. The merge factor (M2 ) returned by this
knowledge source is shown in figure 39b. As can be seen, the factor is neutral
(returns a value of 1.0) unless Abs( o2(Ri) - o2 (Rp) > T2 in which case the
operator tends to block the merge. The global effect of M 2 on the merge score is
controlled by the magnitude of the slope S2 .

The third knowledge source serves to enforce the merge of very small regions.
The assumption is that very small regions may be due to texture or sensor noise
and should in general be deleted. This knowledge source serves to enforce the

" merge of any very small candidate regions. The merge factor (M3 ) returned by this
. knowledge source is shown in figure 39c. This factor is based solely on the

candidate region, and therefore effects all merge scores with its neighbors equally.
This operator only effects the merge/don't merge decision since it does not affect
the relative merit of merging the candidate with its neighbors. For candidate regions
larger than T3 the merge factor has no effect. For regions smaller than T3 the

j knowledge source virtually forces the candidate region to merge with one of the .0
neighbors. The global effect of M3 on the merge score is controlled by K3 .

Regions to be merged should exhibit "good" connectivity, hence it should be
more difficult to merge regions with an extremely short common boundary. This,
fourth knowledge source serves to limit merges between regions with "poor"
connectivity. The merge factor returned by this knowledge source is shown in
figure 39d. The factor has no effect if the connectivity consists of more than T4
edge segments. The merge factor is greater than 1.0 if the connectivity is less than
T4 edge segments. The global effect of M 4 on the merge score is controlled by K4 .

The knowledge sources used here represent a few very simple examples in a 0
very large class of possible region-merge knowledge sources. Many additional
knowledge sources based on different merge criteria are possible. Color differences
of regions, differences in texture measures between regions, or even differences in
current semantic interpretation probabilities could be used to control the merging
process. It is interesting that the current simple operators were as effective in
correcting oversegmentation as they were. Although it is necessary to set some
thresholds, the algorithm is fairly stable as the thresholds are modestly shifted.
Further development of this region merging paradigm may be quite worthwhile.

~~~~~~~~~~~~...................... ,,.-..o... ..... ,..-........-....-..-.-.-...-....../.......-.... ,...,..., ... ,.. .,.- -..-.- .-.-,2-.-:-:-.-.. -- ....-.--: .i- .--- - . -. -- .- - . . -. . . " . . [" " ' " " " " "
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6.7 Experimental Results of Segmentation based on Clustering

This section shows the segmentation algorithm developed in this chapter
applied to a number of different images. For each image we present the
segmentations produced by selecting the clusters from a global histogram, by selecting
the clusters from 32 by 32 subimages without benefit of the cluster addition
algorithm, and by selecting clusters from 32 by 32 subimages using the cluster
addition algorithm. For each of the three algorithms, the result of the algorithm
with and without relaxation is also provided. In all cases the processing begins with
the image smoothing pre-processing algorithm, followed by cluster selection, relaxation
if applicable, removal of the artificial boundaries between subimages (none in the S
case of the global segmentation), and terminating with the region merging
post-processing algorithm.

The region merging post-processing actually used in this section was an
enhanced version of the merging algorithm described in section 6.6.2 which utilizes
some additional knowledge sources. This version of the algorithm will be documented
in a forthcoming technical report (Gri84].

These results are then followed by an experiment showing the importance of
the image smoothing pre-processing for segmenting some images. This section ends
with an analysis of some intermediate results which give a sense of the contributions
and weaknesses of the various components in this algorithm.

All of the images used below (except the virus) were digitized from 35mm
color slides to i spatial resolution of 512 by 512 with approximately 7 bits of
dynamic range per color. The images were reduced to 256 by 256 pixel images by
averaging and portions of the images were extracted for further processing. The
first three images below (virus, bush, and window ) are 64 by 64 pixel subimages.
while all of the other images are 128 by 128 pixel subimages of the corresponding
256 by 256 reduced image. In figure 41 we see the six segmentations of the image
shown in figure 40. The left column of figure 41 contains segmentations produced
without relaxation while the right column shows the segmentations produced after 40 0
iterations of the relaxation algorithm. The top row corresponds to the global
clustering algorithm used by Nagin, the second row corresponds to the localized
algorithm used by Nagin, and the bottom row corresponds to the cluster addition
algorithm presented in this chapter. For the localized algorithms the artificial
boundaries are conservatively removed as described in section 6.6.1 (using a local and
global merge threshold of 1.2). Finally, for all algorithms the region merging
algorithm is applied to produce the segmentations shown. We have not presented .

results from the cluster deletion knowledge sources since the region merging
processing performs the needed merges more effectively since the merge algorithm
makes the merge decision at the level of regions rather than at the level of clusters.

"'S%°.
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•S

Figures 43, 45, 47, 49, 51, 53, 55, and 57 show the corresponding
segmentations applied to the images shown in figures 42, 44, 46, 48, 50, 52, 54, and
56. The segmentations produced by all these algorithms are surprisingly similar in
most cases. Generally, the localized algorithm with cluster addition provides more
detailed segmentations (without oversegmenting significantly) with fewer missing object
boundaries than either the global or localized algorithms. There are cases where each
of the other algorithms produces serious undersegmentations whereas the localized
algorithm with cluster additions produced reasonable segmentations for all of the
images.

The contribution of the very computationally expensive cluster relaxation
algorithm is seen in the difference between the left and right columns of these
figures. In the case of figure 57 the localized cluster addition result was computed
in 355 cpu seconds without relaxation and in 4541 seconds for the segmentation with .0
forty iterations of relaxation." Given the subtle differences, it is difficult to Justify
this additional computational cost. Furthermore, although the relaxation may
improve the quality slightly in some cases, it may, by shifting boundaries slightly,
raise the variance of a region and thereby cause the artificial boundary removal
algorithm or the postprocessing merge algorithm to incorrectly merge that region .
with one of its neighbors (this is what happens in the window area of figure 57), or
the relaxation may blur region shape detail (Li seen in figure 41).

n some cases the global cluster selection is better than localized cluster
selection (see figures 51 and 55). This seems to be due to missing clusters in some
subimages of the localized algorithm. .0

The effect of the image smoothing preprocessing is typically subtle, but figure
58 shows one caewhere the impact of the smoothing is dramatic. The six
segmentations in this figure correspond to the segmentations of figure 41 but for
which the image smoothing preprocessing was omitted. For this example, the 0

smoothing made it possible to find the correct clusters to properly segment the
image.

To provide additional ight into the relative contributions of the various
processing stages, figures 59, 60, 61, 62, 63, and 64 show the intermediate

segmentations produced for figure 56 using each of the results shown in figure 57.
In other words we are presenting Intermediate results of the six algorithms we have
been comparing: global clustering, localized clustering, and localized clustering with
cluster addition, each with and without relaxation. The upper left segmentation of
each of these figures shows the segmentation after smoothing, clustering, and (if

~The run times are on a VAX.11V78D with floating point accelerator. The image is 128 by
128 pixels.
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applicable) relaxation, but before artificial boundaries due to the localization (if any)
have been removed. The upper right image shows the segmentation after the
artificial boundaries are removed (for figures 59 and 60 no such boundaries exist
and the upper right image is identical to the upper left image). The lower left
segmentation has had one and two pixel regions removed (by merging all regions of
size 1 or size 2 with their locally most similar neighbor). The lower right image
shows the final segmentation after the region merging process is applied. Figures 59
and 60 contain an example where the relaxation segmentation loses significant detail
in the window area in the lower left corner of the image while the global
segmentation without relaxation did not loose all of this detail. As can be seen, the
information is not lost until the region merging algorithm is applied. Presumably, this S
is due to a slight shifting of the region boundaries through the relaxation which
increases the internal variance of some regions allowing them to merge incorrectly
with one of its neighbors. Figure 62 shows an example where a missing cluster in
the top row and third column of subimages causes the merging of the roof and tree
regions. The erroneous merge occurs in the algorithm which conservatively removed
the artificial inter subimage boundaries introduced by the localization. In this
example this algorithm was clearly not conservative enough.

6.8 Summary of Segmentation based on Clustering

This chapter has addressed issues of integrating non-semantic knowledge into
a segmentation algorithm. We have defined the concept of a segmentation process
instantiation to include image dependent parameter selection and feature selection for
a particular segmentation algorithm. We applied this concept, utilizing different
types of non-semantic knowledge, to improve upon the cluster selection component
of the modified Nagin segmentation algorithm.

By examining particular types of image segmentation problems, we
demonstrated the value of combining multiple types of non-semantic knowledge to
improve the segmentation process. In particular, we have addressed issues of
undersegmentation due to missed clusters and oversegmentation due to clusters 0
derived irom micro-texture, intensity gradients, and "mixed pixel" regions in the
modified histogram cluster based segmentation algorithm. Addressing these issues
requires us to deal with the relationship between feature space analysis and local
and global characteristics of image space.

This chapter also includes a region merging algorithm which makes region
merge decisions based on a number of merge factors, each of which is based on
somewhat different non-semantic knowledge.

The result of integrating the components discussed in this chapter led to a
much more robust segmentation algorithm which generally produces somewhat more
detailed segmentations than the algorithms to which it is compared. The most
important observation in section 6.7 was that both of the comparison algorithms

. . . . . . . . . .. .
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produced very poor segmentations on some of the images, while the integrated
algorithm produced reasonable segmentations for every image tested.

7.0 COMBINING INDEPENDENT SEGMENTATION PROCESSES

In chapter 6 we explored ways in which multiple sources of ,xnowledge could
be integrated into a single segmentation algorithm. In this chapter we will consider S

how several separate algorithms, each based on different knowledge or assumptions
about the world, might be integrated to produce a single unified segmentation.

Given a set of segmentation processes, each of which computes a segmentation
of the same scene using different features and algorithms, one would expect these
segmentations to be somewhat different but to share many of the same boundaries.
In section 7.1 we first consider ways in which the segmentation results might be
combined without directly unifying the algorithms, while in section 72 we consider
the possibility of dynamically integrating the algorithms such that mutual feedback
leads to unified algorithms with a single, hopefully consistent, segmentation.

7.1 Static Integration of Segmentations

This section considers two methods by which a set of segmentation results of
the same image might be combined into a single segmentation. These methods
operate without any prior knowledge of the characteristics of the algorithms which
generated the segmentations.

The first method is based on the region merging algorithm presented in
section 6.62. Here, all region boundary and edge hypotheses proposed by any of the
segmentation processes are combined and the merging process is used to remove
some of these boundaries. The second method is based on the concept of "islands
of reliability" from Hearsay. Here, boundaries of the image which obtain support
from many of the contributing segmentations are considered to be correct and these
boundaries are iteratively extended using boundary continuity criteria. It is argued
that this method could easily be extended to allow integration of semantic
expectations generated by high level interpretation processes or prior knowledge
about the behavior of specific segmentation algorithms in image areas with known
characteristics into the unification process.

Sections 7.1.1 and 7.1.2 below examine some segmentations produced by three
distinct segmentation algorithms applied to several image features. The intent is to
provide the reader with insights into the differences between the characteristics of . -.

the segmentation algorithms and the differences among segmentations based on

. S''' '° '



Combining Independent Segmentation Processes 137

different features. If all of the segmentations, regardless of image feattee or
segmentation algorithm, produced exactly the same segmentation errors, #hen no
integration of these segmentations could hope to correct the errors. Fortunately, this
does not seem to be the case.

In the first set of examples in the following section, the region relaxation
algorithm, the edge relaxation algorithm, and the multi-thresholding algorithm were
applied to three intensity images. The examples of section 7.1.1 will show that the
algorithms do produce different segmentations and the errors made by the algorithms
are not necessarily identical. In sections 7.1.3 and 7.1.4 we will attempt to avoid
some of those errors, but for now, let us summarize with some observed or deduced 0
characteristics of the three algorithms.

The region cluster labeling algorithm seems prone to oversegientation,
especially in are;,s of texture such as trees. The algorithm forms regions and
therefore, there are no problems with unclosed contours as in the edge algorithm.
Since the algorithm is dependent on feature space clusters, the segmentation may
miss boundaries even when there is local high contrast evidence for the boundary,
while boundaries may be introduced in areas where no edge is discernable.

The multi-threshold algorithm is sensitive to strong boundaries and rarely
misses them, but the algorithm may also introduce boundaries even if there is little
or no local evidence to support such a boundary. Furthermore, this algorithm is
sensitive to high contrast micro-texture and may find multiple representations for
blurred boundaries. This algorithm also leads to closed regions.

Tiie edge relaxation algorithm does not form closed contours and may fail to
detect low contrast boundaries. The algorithm tends to oversegment in the presence
of texture. The algorithm finds boundaries only where there is local contrast support
(unlike the other two algorithms which may introduce boundaries to form closed
regions even if no evidence for the boundary exists).

Multiple Segmentation Examples.

Figures 65, 66, and 67 show three intensity images and their corresponding
segmentations. Figure 65a shows the virus image with a gradient across the
background. Figure 65b shows the segmentation resulting from the region relaxation
algorithm. The resulting segmentation has few errors. Figure 65c shows the result
of applying the edge relaxation algorithm. In this segmentation, a number of
micro-texture regions are segmented as separate regions, and many significant
boundaries fail to form closed regions. Furthermore, some low contrast but
significant boundaries are lost entirely. Figure 65d shows the segmentation produced
by the multi-threshold algorithm. This segmentation exhibits some gross errors in
the areas where the local contrast of the desirable boundaries is small due to the
intensity gradient.

* .;.,S._.-: : _.:--;:.::-.:_-: ::. : :::: :::::::::: -::::-::::-:- :,::::::::::::::::::::::::_ : :



- - - - - - - - -

138 Combining Independenit Segmentation Processes

V~L~ 0

CC

(a)(b

c-i2 I a~ 0 
0 00 0

0 00 lb

D 0 r 0 0 C

0 0 00

03 q3 0 K -~ 0  0 L

Uc 0d)

co 
cf. ..

i c% , .
..



Combining Independent Segmentation Processes 139

-77' I 7 7- iu1*'±U

- ~- - 4 .~ - ---- ------

*l 0 c

(c) (d)

Figue 6: Bsh egmntaion fo Clster Ede, nd im-sho Alorihms



140 Combining independent Segmentation Processes

ESWA

5390

0~ 095

(a)Cb

rdS

-mJ
T7c

Figure 67: Window Segmentations for Cluster, Edge, and Threshold Algorithms.



Combining Independent Segmentation Processes 141

In figure 66b we see a certain amount of oversegmentation due to intensity
gradients around the window bottoms and the top of the bush, as well as the tree
shadow on the left house wall. Figure 66c again shows some boundaries
corresponding to micro texture and maaiy unclosed regions. Figure 66d shows
multiple thresholds detecting the somewhat fuzzy boundary between the bush and
house. Figure 67b and 67d seem to be quite similar in character and again are an
oversegmentation which includes some mixed pixel regions at the shutter boundaries
and considerable partitioning of the window interior. In the case of figure 67c we
detect most of the window boundaries, but we stifl do not form closed boundaries.

A combined segmentation can be obtained from the individual segmentations
in a variety of ways. A conservative approach would be to require all algorithms
to agree on a boundary before accepting a boundary. Similarly, this requirement
could be relaxed requiring m of n segmentations to agree on a boundary before
accepting the boundary in the combined segmentation. To demonstrate the kind of
results one could expect from such simple integration algorithms, we overlay the
segmentations produced by the three algorithms in the previous examples, as shown

* - in figure 68. The left column shows the intersection of the three segmentations for
* each of the three images. As can be seen, this intersection contains very few

boundary segments which do not correspond to meaningful boundaries. The second
column of figure 68 shows the boundaries agreed to by at least two of the three-
algorithms, while the last column shows all boundaries suggested by any of the three
algorithms (the logical "or" or union of the segmentations). As can be seen the
agreement of two or more segmentations leads to quite a few boundaries which may
not be desirable in the final segmentation, while the "or" of the segmentations
results in a gross oversegmentation.

Color Segmentation Examples.

Color information can contribute significantly to segmentation. Nagin
advocated the use of a two-dimensional histogram of two color features (such as
pairs of opponent color transforms) as the basis for the cluster labeling region
algorithm. In this section we will show several segmentations of some of the images
of the last section computed independently on each of the three raw color bends
(red, green, and blue)-" In the natural scene examples, the intensity at each pixel
correlates extremely well with the raw color components. In these examples, the

* vast majority of the i *-rmation critical to computing a "good" segmentation is
available in the intensity image (as evidenced by the segmentations of the previous
section). For this reason, we have also included an artificial image (generated by
an image synthesis program using a complex lighting model) in which color

* information is critical in obtaining a reasonable segmentation.

"Our preliminary experiments with alternative color spaces were disappointing, and therefore,
for simplicity, we limit this discussion to the raw color components.
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This artificial scene consists of two cylinders on a blue background. Figure 69
shows the image red, green, blue components, and intensity. Since the colors in
this scene are fairly saturated and of similar brightness, segmentations based on
intensity alone are virtually useless.

Each of figures 70 - 72 shows the raw red, green, and blue intensity images S
from left to right in the top row. The second row shows the corresponding
segmentations produced by the region clustering algorithm. The third row shows the
corresponding segmentations computed using the multi-threshold algorithm while the
bottom row shows the corresponding segmentations computed using the edge
relaxation algorithm.

Unified segmentations through merging.

By applying a region merging algorithm very similar to that described in
chapter six to the union (the logical "or") of all of the possible segmentations, -
much of the undesirable oversegmentation is removed. The merge algorithm is the
same as that used in section 6.7 with a straightforward extension to color images,
e.g. using the euclidean color space distance as a merge factor in place of intensity
difference. The algorithm was also extended to include additional rules for detecting
"mixed pixel" regions and for blocking merges based on texture measure
differences. Figure 73 shows the segmentations produced by this method for the
four images used in section 6.12. The left column shows the segmentations before
any merging has taken place, while the right column shows the resulting
segmentation after the final region merge process described in section 6.62. The
reader should compare these segmentations to to those of figures 65, 66, 69, and 70.

Combined segmentations by extending high confidence boundaries.

Another possible approach to combining the various segmentations begins with
a core set of high confidence boundaries and extends this set with boundaries
necessary for good continuation. Intuitively, we begin with boundaries which all or
most of the the segmentation algorithms agree exist and iteratively add additional
boundaries in order to form closed regions."

The first step in the algorithm is to select a set of high confidence boundaries
from a candidate set of boundaries formed by the union of the boundaries in all
the segmentations." For each candidate boundary we compute a match score based
on the average number of segmentations which agree on the boundary normalized

30 This methodology is similar to the islands of reliability control strategy used in Hearsay [I.
By a boundary we mean a set of connected edge segments which contains no branch
points (vertices). Boundaries are constrained to terminate at vertices of degree one, three,
or four.
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by the number of alternative segmentations considered. A match score of 1.0 would
mean that all of the segmentations agree on the placement of the entire boundary
exactly. The match score would approach 1.0/(number-of-segmentations) when only
one segmentation believes the boundary exists. The high confidence boundary set
is computed by thresholding on the candidate set match scores. For all of the
experiments below boundaries with match scores greater than .7 were accepted.

Once the initial high confidence boundaries are selected, the algorithm adds
additional boundaries at degree one vertices. At each degree one vertex in the
high confidence boundary set, the alternative boundaries from the candidate set

which could extend this boundary are evaluated, and the boundary extension with 0
highest match score is added to the current boundary set. If two alternatives have
approximately equal match scores, then the shorter alternative boundary is selected.
This commits the continuation to the shortest extension in these cases. Parallel
hypothetical extension or backtracking are not considered here but could be of value

in future extensions.

Figures 74, 75, 76, and 77 show the segmentation produced by this algorithm
for the four images used in the previous section. The image in the upper left
corner shows the initial candidate set of boundaries. The image in the upper right
corner shows the initial high confidence boundaries selected by the first part of the
algorithm. The lower left image shows the segmentation after extending all degree 0

one vertices from the high confidence image iteratively. Note that any degree one
vertices remaining were proposed by one of the edge relaxation izgmentations and
have no alternative extension in the candidate set. Finally, the image in the lower
right shows the segmentation after region labelling and suppression of regions
containing only one or two pixels.

The segmentations produced by this algorithm are quite good. However, the
segmentations produced by the current algorithm may occasionally miss major image
boundaries when no component boundary is included in the initial candidate set, and
the algorithm may not form closed regions when the extension algorithm selects an
extension to a boundary which is in fact an alternative positioning of the same
boundary being extended. The worst segmentation was that of figure 77. The
quality of this segmentation improves markedly if a match threshold of .6 is used
for the initial candidate set; however, this setting would result in oversegmentation
in figures 74, 75, and 76.

A number of modifications of this algorithm were evaluated, including
alternative methods for selecting the candidate set, use of inexact matching to obtain
match scores, and a somewhat more sophisticated extension algorithm which favored
boundaries connecting two degree one vertices. None of these modifications
improved the quality of the final segmentations. There are two possible extensions
of this algorithm which we have yet to explore. The first extension would replace
the criteria for extending high confidence boundaries to use more complex functions
such as those used in the remerging algorithm. It is clear that the primitive match

• . .S
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score used currently often leads to incorrect choices between alternative extensions.
The second extension of the algorithm would replace the discrete selection of initial
candidates and extension of boundaries with a relaxation algorithm which updated
region boundary scores in much the same way as the edge relaxation algorithm of
chapter III modified edge scores.

Another intriguing variant of this algorithm could locally weight each of the
segmentations used to compute the match scores. The mechanism would be simply
to point-wise multiply each segmentation with an image-Jependent and
algorithm-dependent weight image. This methodology could be used to increase
sensitivity to boundary selection in areas where the semantic interpretation system
expected a boundary but none was found, or to decrease sensitivity in areas of
image texture for algorithms which tend to oversegment in the presence of texture.
Furthermore, the methodology could change the relative contribution of the various
segmentations to the match score. In particular, if one found that the threshold
based algorithm was less sensitive to macro texture than the other two algorithms,
one could locally increase the weight of the threshold algorithm boundaries in areas
thought to contain macro texture, while simultaneously reducing the influence of the
other algorithms in those areas by reducing their coefficients. One could similarly
weight segmentations resulting from different features. If the goal of the

segmentation process was to avoid fragmenting tree macro texture, one could
increase the weight of the segmentations based on the green band over those based
on the red band since the green spectral component is typically more uniform in
tree areas than the red spectral component.

7.2 Dynamic Integration of Segmentations 0

One of the motivations behind the relaxation algorithms presented in chapter
I is that it is best to postpone labeling decisions until as much evidence as possible

has been obtained.' In these algorithms, evidence of cluster membership or edge
presence was collected over a spatial neighborhood through the relaxation process.
The (luster labeling algorithm knew nothing about possible edge placements
advocated by the edge relaxation algorithm, and the edge relaxation algorithm knew
nothing about the cluster labels on either side of an edge. We have argued that
the edge and cluster algorithms operate on related but not identical information, and
that it should be possible to integrate this knowledge to improve the segmentations.

In the case of the edge relaxation algorithm, the presence of an edge-
between two pixels is reinforced if the cluster algorithm finds that the pixels belong
to different label classes. The presence of the edge is inhibited when the pixels have
the same cluster affiliation probability distributions.

n Marr [MAR75] has called this the principle of least commitment.

S .
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a0
Similarly, the compatability coefficients in the cluster relaxation scheme attempt

to model local structure through a global measure. It could be argued that the
edge information available from the edge relaxation algorithm might better represent
the local geometry in the cluster afiliation updating than the compatibilities (or both
factors could be used in conjunction). Pixels which are not separated by an edge
should converge to the same label while pixels separated by an edge should converge
to different labels.

In figure 78.a we see the parallel independent algorithms as they are described
in chapter 3 while figure 78.b shows the integrated algorithm. 0

How the Edge Relaxation Algorithm uses Cluster Probabilities.

In the cluster relaxation algorithm the current labeling of each pixel is
represented by a probability vector of cluster affiliations. We define the cluster
algorithm's estimate of an edge between two adjacent pixels to be the Euclidian
distance between the corresponding probability vectors. This measure is 1.0 if and
only if both pixels have converged to different labels. The measure is 0.0 when
both probability vectors are identical (and therefore it is likely that the pixels will
converge to the same label).

As discussed in chapter 3, the edge relaxation update looks at all edges in a
small neighborhood around the edge to be updated. In order to integrate the
information from the region clustering algorithm, the edge algorithm simply views its
neighborhood through a simple filter which takes a weighted mean of the edge
currently estimated by the edge relaxation algorithm and the edge estimated by thecluster algorithm. In the experiments below both algorithms were weighted equally.

How the Cluster Algorithm uses Edge Probabilities.

The cluster relaxation algorithm updates a pixel in a neighborhood as stated in 0
equations 32 and 3.3. We can integrate the edge information into the relaxation by
replacing equation 32 with

* q(i) = (l-Px(e)) I rx(ij) Px(j) 7.7

x n jfC

*-. •where Px(e) is the edge relaxation algorithm's estimate th~t an edge exists between

the center pixel and neighbor pixel x. Effectively, this form implies that neighbors
separated by high confidence edges do not contribute significantly to the update of
the pixel. Since equation 3.3 is essentially a normalization, reducing the influence of
one neighbor implicitly increases the relative contribution of the other neighbors.

°o -. 0
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0.

Equation 7.7 integrates both the compatibilities and the edge probabilities in
the update rule. In a second experiment we replaced the complex directional
compatibilities based on the conditional probabilities of the initial pixel labeling with
compatibilities where rx(ij) is 1.0 when i equals j and -1.0 otherwise. It has been

shown that use of these simple compatibilities will destroy fine image structure 0
(NAG79], but use of the edge information should help to preserve those structures.

Interacting Relaxation Results.

In Figure 79 we can compare the interacting relaxation algorithm with the two p
independent algorithms. In this figure both the compatibility coefficients and the
edges were used to update the cluster probability vectors. The left column shows
the results of the independent global region cluster labeling relaxation algorithm run
independently after 0, 2, 5 and 20 iterations of relaxation. The second column
similarly shows the independent edge relaxation algorithm. The third and fourth p
columns show the results of the interacting cluster and edge algorithms, respectively.
The third column shows the region cluster labeling algorithm which is using the
edge algorithm information to update cluster affiliation probabilities. The fourth
column shows the result of the edge algorithm which uses region algorithm cluster
affiliation probabilities to update the edge probabilities. Figure 80 shows the same -

results when the cluster label compatibility coefficients are forced to I for like labels •
and -1 for different labels. Figures 81, 82, 83, and 84 show the corresponding
results for two additional images

The effect of the edge algorithm on the cluster algorithm seems to be limited.
The cluster algorithm is based on global clusters and even if the edge algorithm can 0
decouple one or two pixels from the update, it cannot introduce new boundaries
between regions which converge to the same global cluster. On the other hand, the
cluster algorithm significantly reduces the number of edges in the edge algorithm
segmentation which seem to correspond to noise.

The fine image structures which are destroyed by the relaxation with plus and
minus one compatibility coefficients are preserved when the edge algorithm
information is used as can be seen by comparing the columns one and three in
figure 80. The area of the DNA in the virus image of figure 79 also indicates that
the use of the edge information may better preserve these fine image structures
than the compatibility coefficients alone. S

* .
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8.0 SUMMARY, FUTURE WORK, AND CONCLUSIONS

This chapter summarizes the contribution of the dissertation, discusses some of
the major findings and issues, and proposes possible future work.

Our expressed goal was to produce initial segmentations of complex images
with sufficient detail to initiate the interpretation process of the VISIONS system.
This involves a tradeoff between the conflicting goals of producing a segmentation
that faithfully represents image detail and the computational considerations that
suggest a small number of regions is desirable. Since natural scenes often contain
small objects with fine geometric structure, intensity gradients, shadows, highlights, S
and texture, the calculation of reasonable segmentations for natural scenes is
extremely difficult. Because most segmentation algorithms are based on a small set
of heuristics which reflect both implicit and explicit assumptions about the image, no
segmentation algorithm can be expected to produce good segmentations when the

* assumptions on which it is based are violated.

In order to overcome these difficulties, we have successfully developed
segmentation techniques which integrate various types of non-semantic knowledge into
the segmentation process such that this knowledge can be used when and where it is
appropriate.

The dissertation began by presenting the "Visions Image Operating System",
the integrated software environment which made all of the experiments in this

dissertation possible. The 1OS provides a powerful experimental environment, built
on LISP, in which complex image analysis algorithms can be easily integrated and
applied to images of different structure and resolution. The IOS is currently being
used by many researchers in image analysis both at the University of Massachusetts
and at several other sites. We believe the IOS to be a significant advance in
software available for low level image processing because of its functionality and
because it encourages the design of parallel algorithms which will run on future
parallel computers. The IOS allows the reseacher to concentrate on his algorithm
rather than on programming details by providing image access fuctions in the image
operators that handle varied data types and image boundary conditions. The IOS
LISP interface allows the researcher to dynamically experiment and build image
analysis algorithms by composing sequences of simple image operators. The IOS
strikes an effective balance between the need for dynamic experimentation in an
image analysis research environment and the computational needs inherent in the
image processing domain.

In chapter 4 we extended a region clustering algorithm proposed by Nagin in
two ways. First we showed that neither a minimum distance classifier nor a valley
based decision boundary for cluster formation could be shown to be effective for
all images. We developed a heuristic which balanced these approaches to produce a
decision boundary which resulted in fewer post-relaxation errors. The second
extension of the Nagin algorithm modified the center pixel compatibilities (which

. . . " .."* *
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determine the contribution of the center pixel in the relaxation update process) based
on the goals of relaxation process. This technique not only lets us predict the
behavior of the algorithm at local convergence, even in the multilabel case, but also
lets us control the geometries which the relaxation will and will not preserve for any
given image.

In chapter 5 we discussed the issue of segmentation evaluation. We provide
no solutions to the perplexing problem of evaluating segmentations of complex
outdoor scenes, but we do offer a methodology for segmentation algorithm
development using images of increasing complexity, first to quantitatively and then to
qualitatively evaluate the segmentations. Since the most advanced segmentation
algorithms currently still make gross errors in segmenting images with texture,
intensity gradients, and other complicating characteristics, we believe that subtle
quantitative evaluation is not the most important problem to solve in the field of
image segmentation.

In chapter 6 we investigated the integration of non-semantic knowledge into a
single segmentation algorithm. We began by extending a si. i'le segmentation
algorithm which labels pixels with the feature histogram cluster to which they
correspond within a relaxation labeling paradigm. This algorithm has a tendency to
undersegment by failing to find clusters corresponding to small objects, and to
oversegment by splitting intensity gradients into multiple clusters, by finding clusters e
for "mixed pixel" regions, and by finding clusters corresponding to microtexture
elements. Furthermore, the relaxation process often destroys fine structure in the
image. Nagin addressed the problem of missing clusters by localizing the process in
the image space, which introduced the problem of inconsistent cluster sets in the
artificial subimage partitions and the problem of combining the segmentations of the
separate submimages into a consistent whole. Each of these problems was dealt
with by adding and deleting clusters based on image space information, by merging
regions, and by defining different compatibility coefficients in the relaxation so as to
preserve fine structures. The result was a segmentation algorithm which more
reliably produced better segmentations over a broader range of images than the
simple clustering algorithm. We believe the resulting algorithm to be a state of the S
art segmentation algorithm which produces segmentations competitive with any
existing segmentation algorithms.

The segmentations produced by this algorithm did raise questions as to the
value of the cluster labeling relaxation processing since the relaxation was very
computationally expensive but contributed very little to the final segmentations. It
seemed that small region suppression (one and two pixels) achieved the majority of
the effect of the relaxation. Although relaxation algorithms have tremendous
intuitive appeal, their usefulness in our current form of histogram cluster labelling
to produce regions seems limited. Basically the relaxation algorithms are local
optimization procedures. As with many such procedures the results are good when B

the initial guess is close to an optimum, but can be much worse otherwise.
Furthermore, the local convergence is not tied to the original data directly, thus

-..- . . .
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allowing the algorithms to "hallucinate". Very often their myopic view through
small local windows is too limited to make good decisions for a more global
optimization. In the case of our cluster based relaxation algorithm the problem is
even worse, since this algorithm optimizes relative to a set of clusters which may be
incorrect. As we have seen the incorrect selection of clusters can produce very bad
segmentations.

One extremely interesting algorithm developed in chapter 6 is the region
merging post-processing, which promises to be a very flexible approach independent
of the other work presented in this dissertation. This algorithm effectively applies a
number of small "knowledge sources" or merge rules to the merging of regions s
much in the same way that expert systems operate. Each merge rule may be
applicable or not to a given merge decision and if applicable the rule contributes a
weighted vote either in favor of the merge or opposed to the merge. The weight
of the vote is proportional to the power of the rule, the confidence that the rule is
appropriate for a given situation, and the confidence of the merge/no-merge decision
itself. Since the rules set can be arbitrarily augmented, and the influence of each
rule can be dynamically modified, this algorithm can provide a powerful framework
for a segmentation executive. The segmentation executive could make segmentation
decisions, perhaps based in part on feedback from the semantic interpretation system,
aad affect those decisions by altering the region merge rule set and individual rule
parameters, by focussing on interesting image areas, or by weighting the various S
image features used in merge decisions.

Finally, in chapter 7 we investigated the integration of several segmentation
processes using different segmentation algorithms, where the algorithms used each are
based upon different assumptions about the image, and therefore have different
strengths and weaknesses. We considered two approaches: integrating the
segmentation results after they were independently computed, and integrating the
algorithms directly during the relaxation process. The static integration using
merging seemed quite effective and the algorithm which extended boundaries
outward from islands cf reliability, while not as successful, could be developed
further. 0

When we integrated the region and edge algorithms directly, we found that
the edge algorithm significantly reduced the number of isolated "noise" edges
remaining after the relaxation process compared to the edge algorithm which did not
utilize region information. We found no significant differences between global
cluster label relaxation algorithm using and not using edge information.

In these experiments it was also observed that if edge information is utilized
by the cluster label relaxation algorithm, the rather complicated compatibilities in the
cluster relaxation process might effectively be replaced by simple +1 or -1
compatibilities, without seriously degrading the algorithm's ability to preserve fine
image structure. Thus, edge information has replaced conditional probabilities that
had to be derived from the image structure.

• " ' . ." . . . . .. .. .. *....- - ..--.
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8.1 Future Work

A number of straightforward extensions of the approaches taken in this
dissertation have been mentioned throughout. Beyond these, the method of
integrating knowledge to select parameters could be extended to other algorithms
such as the edge relaxation algorithm. One could also apply the same approach to
the selection of the image features to which the algorithm is applied. Ohlander
[OHL75] and Coleman [COL79] both approached the problem of feature selection
using only the feature histograms (one dimensional and multidimensional histograms
respectively) ignoring the effect of the decisions in image space. Selection of image
features utilizing both feature space and image space information represents a major 0
research area for the future.

Hierarchical Approaches.

As mentioned in section 7.1.1, a serious problem evident in both relaxation
algorithms used in this dissertation is the lack of adequate context. The algorithms
often find locally consistent solutions that are not globally consistent or desirable.
In particular, the cluster region algorithm may preserve two pixel regions since
neither pixel, with only a three pixel by three pixel view of the world, is aware
that it is not part of some larger region. In the edge relaxation algorithm
boundaries often fail to complete correctly when a single pixel is surrounded by "
boundaries at the end of the segment. In such a case the local connectivity
constraints are satisfied but more global continuity is lost. Although these problems
could be partially addressed by extending the relaxation neighborhoods, a more
promising solution would be to integrate hierarchical relaxation algorithms operating
at different levels of resolution. This could be viewed as an extension to the
interacting relaxation algorithm methodology introduced in chapter 7. The
alternative segmentation processes would use the same algorithm but be applied to
the san e image at different levels of resolution.

Alternative Clustering Algorithms.
0

It would be desirable to develop new cluster selection algorithms which
integrate the concept of localization without the arbitrary partitioning of the scene
into rectangular sub-images. In chapter 3 we saw that some form of localization
was critical in detecting clusters corresponding to small regions. The localization
into rectangular subimages did make it possible to locate the smaller hard to find 0
clusters, but differences between cluster sets in the independent subimages made the
task of "sewing" the pieces back together very difficult. The cluster addition
algorithm alleviated this problem by ensuring that all necessary clusters were
represented in the neighboring image sector; however artifacts at the junction
between boundaries sometimes remain, since the clusters may be slightly different in
the adjacent subimages. We would propose an alternative to this fixed sector cluster
selection, where cluster sets are estimated at each pixel and a hierarchical relaxation
algorithm selects a locally consistent cluster set at each pixel. Such an algorithm
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would combine the advantages of localization in cluster selection without the

artificial partitioning problem. Furthermore, the algorithm would be able to form
regions in an intensity gradient without frpgmentation, since the cluster center could
drift over the spatial domain of the region. Hierarchical filtering of cluster
alternatives would probably be desirable here as well.

8.2 Conclusions.

Many of the current state of the art segmentation algorithms use only a few
assumptions or heuristics about image characteristics to partion an image into

A regions. These algorithms have, for the most part, not succeeded in producing
useful segmentation across a broad range of images from different domains. The
algorithms developed in this dissertation have integrated various kinds of
non-semantic knowledge into the segmentation process. We suggest that these
extended algorithms produce effective segmentations more reliably than the
algorithms upon which they were based.
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of in onsistent cluster sets and the need to recombine the segmentations of
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coefficients in the relaxation so as to preserve fine structures. The

result is a segmentation algorithm which is more reliable over a broader
range of images than the simple clustering algorithm.
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Multi-process intt.gratoi tc mni ;i(ts varied from static integration of the
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constituent algorith'-ms.

Finally, the dissertation also describes the Visions Image Operating
System (IOS) which made all of the experiments in this dissertation possible.
This software environment, driven by an interactive user interface in LISP,
provides a powerful experimental tool in which complex image analysis 6
algorithms can be easily integrated and applied t) images of different
structure and resolution. The IOS is currently bing used by many image
analysis researchers at the University of Massachusetts and at several
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